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Abstract

Overparameterized neural networks routinely generalize despite being able to fit
random labels, revealing strong algorithmic biases whose origins are not fully
understood. This thesis advances a function-space perspective on those biases and
couples it with invariance-aware diagnostics. First, it shows that common flatness
measures can be driven to arbitrarily different values by benign parameter rescalings
or optimizer choices, while the function-space prior logP (f) serves as a rescaling-
invariant predictor of generalization across architectures and training algorithms.
Second, it introduces fragility audits—targeted stress tests based on learning-
curve stability, post-interpolation dynamics, and dataset difficulty—that expose
qualitative mismatches in many popular generalization measures and highlight
a Gaussian-process marginal-likelihood predictor that remains stable. Third, it
derives closed-form scaling laws for minimum-ℓp interpolators and for diagonal
linear networks under ℓp bias, identifying universal elbows and thresholds that
govern the behavior of the entire family of ℓr norms and explaining why superficially
similar proxies can diverge across regimes. Taken together, these results yield
practical, theory-grounded guidance for assessing generalization: evaluate predictors
in function space, insist on symmetry invariance and robustness to routine training
changes, and rely on proxies whose scaling behavior is explicit and justified.
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1
Introduction

Machine learning systems are judged not by how well they memorize their training

sets, but by how reliably they make predictions on new data. This capacity to

generalize has long been the organizing principle of statistical learning theory, and

it continues to frame debates in modern deep learning. What has changed is the

regime in which these debates unfold. Contemporary neural networks are routinely

trained with far more parameters than training examples, often to the point of

interpolation, and yet they still achieve strong out-of-sample performance on natural

data. That an overparameterized model can fit arbitrary labels but still generalize

when the labels carry structure is both empirically undeniable and theoretically

provocative. It forces us to revisit the question of why certain training pipelines

lead to predictors that work, and what kinds of evidence should persuade us that

a proxy for generalization is capturing the right phenomenon.

Classical accounts emphasize capacity control: bounding the richness of a

hypothesis class through measures such as VC dimension, Rademacher complexity,

margins, compression, and algorithmic stability. These ideas remain foundational,

not least because they articulate desiderata any modern explanation must respect.

Yet capacity alone, treated as a static property of a parameterized function class,

struggles to explain the deep-learning reality that models with effectively unbounded

capacity can generalize when trained with particular algorithms, schedules, and

1
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inductive biases. The tension shows up in several well-known observations: deep

networks can interpolate noisy data without immediately collapsing test accuracy;

widening or deepening a model sometimes helps more after interpolation; and

training dynamics steer solutions toward functions with particular regularities

even when no explicit regularizer is present. These observations suggest that

generalization in practice is an algorithmic phenomenon as much as a capacity

one, expressing the interaction between parameterization, data geometry, and the

path taken by optimization.

To reason productively in this setting, we need language that connects three

levels. At the level of functions, a predictor’s behavior on inputs—its invariances,

margins, and sensitivity to perturbations—matters more than any single coordinate

system in parameter space. At the level of algorithms, stochastic optimization, data

augmentation, and early stopping impose an implicit bias that selects among the

many interpolating solutions. At the level of models, architectural choices such as

depth, skip connections, and normalization layers introduce symmetries that reshape

how parameter changes translate into function changes. Any measure that purports

to predict generalization must therefore navigate these levels simultaneously: it

must be sensitive to the structure of the learned function, robust to harmless

reparameterizations, and reflective of how learning procedures actually traverse

the landscape.

This requirement immediately clarifies why some intuitive diagnostics are more

brittle than they first appear. Many popular post-hoc measures are computed

from a single trained parameter vector: a sharpness or flatness score near a

local minimum, a norm of the weights, or a margin computed on an internal

representation. These quantities can be informative in narrow settings, but they

are also vulnerable to changes that alter parameters without materially changing

the predictor. Rescaling layers in a network with normalization, swapping one

optimizer for another while keeping test error steady, or following learning-rate

schedules that traverse equivalent function trajectories can all scramble parameter

magnitudes and local curvature without affecting what the model computes. If a
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diagnostic responds primarily to such superficial changes, it does not tell us much

about generalization itself. The right baseline, then, is invariance: measures that

track properties of the predictor should be indifferent to symmetries and pathologies

that leave the predictor unchanged, and they should move in predictable ways

when the data truly become easier or harder.

A complementary perspective comes from the function-space viewpoint. Instead

of trying to read generalization off the surface geometry of the loss in parameter

space, one can ask what prior probability a training pipeline implicitly assigns to

different functions, and how that prior interacts with the data distribution. Bayesian

and PAC–Bayesian analyses make this connection explicit by relating expected

generalization to quantities that live in function space, such as marginal likelihood

and priors over outputs. Even when exact Bayesian training is out of reach, the

function-space lens provides two practical virtues. First, it encodes the invariances

that parameter-space surrogates often ignore: if two parameterizations compute

the same function, their function-space description coincides. Second, it naturally

absorbs architectural symmetries and the effect of early layers that act as learned

feature maps, aligning the measure with what matters for prediction. In modern

practice, approximations to this lens—via Gaussian process limits, ensembles, or

carefully constructed surrogates—offer a way to calibrate claims about difficulty

across datasets and to check whether a proposed diagnostic is reacting to the data

rather than to incidental details of the training path.

Equally important is a tractable theoretical setting in which we can isolate

causes from consequences. Overparameterized linear models and simplified neural

families such as diagonal linear networks offer such a laboratory. They capture

essential ingredients of modern pipelines—interpolation, implicit regularization, and

sensitivity to initialization—without the full complexity of deep architectures. In

these models one can derive closed-form relationships between sample size, data

anisotropy, initialization scale, and families of norms or margins that are often used

as generalization proxies. These formulas do not replace full-scale experiments,

but they do sharpen our intuitions: they tell us when a norm should increase
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or decrease with more data, when a bulk of noisy directions should dominate a

diagnostic, and when alignment with signal should take over as the effective bias

changes. The resulting picture is more nuanced than “smaller is better”: the same

proxy can be informative in one regime and misleading in another, depending on

which features of the data and algorithm are salient.

Taken together, these strands motivate a pragmatic stance on evaluation. Rather

than treating any single surrogate as a universal currency for generalization, we

should (i) demand invariance to symmetries that preserve the predictor, (ii) check

stability under benign changes in the training pipeline, and (iii) ensure sensitivity

to genuine changes in task difficulty. When such audits are built into empirical

practice, they help separate measures that encode properties of the learned function

from those that primarily reflect the accidents of parameterization or optimization.

When theory is layered on top of these audits, it can explain why a measure succeeds

or fails and delineate the regimes in which it should be trusted.

The chapters that follow develop this outlook from complementary angles. One

thread examines geometric intuitions—such as flatness and sharpness—and asks

when they align with out-of-sample behavior and when they are undone by reparam-

eterizations and optimizer choices. Another thread advances an evaluation protocol

that treats fragility as a first-class failure mode and builds simple, reproducible

stress tests into the way we compare generalization surrogates across datasets

and training setups. A third thread turns to simplified models where we can

write down scaling laws for whole families of norms and see explicitly how data

geometry and inductive bias govern their behavior. Together these threads argue

for measures that live where prediction lives—in function space or in invariants

of the predictor—and for empirical habits that test surrogates against the kinds

of shifts that routinely occur in modern pipelines.

Roadmap. Chapter 2 surveys classical generalization frameworks and modern

complexity measures that ground the rest of the thesis. Chapter 3 interrogates

parameter-space notions such as flatness and contrasts them with a function-space

alternative grounded in priors over network outputs. Chapter 4 proposes and applies
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fragility audits that probe whether generalization measures react to optimizer swaps,

scale symmetries, and dataset difficulty in ways that track test error. Chapter 5

develops closed-form scaling laws in tractable overparameterized settings to explain

how norm-based proxies behave across regimes. Chapter 6 draws the lessons together

and sketches directions for extending invariance-aware diagnostics and theory to

richer architectures and training regimes.



2
Background

Predicting/bounding the generalization performance of supervised machine learning

algorithms has a long history. The celebrated probably approximately correct (PAC)

framework [Valiant, 1984], alongside with uniform convergence analysis [Vapnik,

1968, Vapnik and Chervonenkis, 1974, Vapnik, 1995] provided the first theory to

bound the generalization error of a supervised model which sees the data from a

training set and infers on the unseen. The high level idea is (in the agnostic regime)

that if we assume an unknown probability distribution of the data and the losses can

be seen as bounded random variables, then we can apply concentration inequalities

(e.g. Hoeffding’s) to bound the difference of empirical error and generalization error,

which is the generalization gap.

Model complexity plays a central role in most of the generalization bounds. Tradi-

tional wisdom has considered uniform convergence properties such as VC dimension

and Rademacher complexity, which are shown to be not satisfactory in the regime

of overparameterized neural networks [Zhang et al., 2016a]. Numerous recent

works have been focused on proposing better complexity measures using different

approaches. In the following sections we will introduce the problem setup and some

noticeable generalization bounds from different categories.

6
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2.1 Notation for the supervised learning problem

In the context of a supervised learning problem, the standard formalization usually

starts with defining the input and output domains as X and Y, respectively.

Assume that the underlying data distribution is D. Our training set, denoted as

S, consists of n input-output pairs that are IID sampled from D, represented as

S = {(xi, yi)}ni=1 ∼ Dn. To gauge the quality of predictions, we employ a loss

function L : Y × Y → R, quantifying how well a prediction ŷ ∈ Y aligns with the

actual output y ∈ Y . A hypothesis h is characterized as a function mapping inputs

to outputs, expressed as h : X → Y . The (true) risk R associated with hypothesis

h is the expected value of the loss incurred by predicted outputs on new samples,

defined as R(h) = E(x,y)∼D[L(h(x), y)]. In contrast, the empirical risk R̂(h, S) is

computed as the empirical average of the loss function over the training set, given

by R̂(h, S) = 1
n

∑
(x,y)∈S L(h(x), y). This distinction allows us to assess how well a

hypothesis generalizes from the training data to new, unseen samples.

In the case of classification, Y is a discrete set and the typical loss to consider is

the 0− 1 loss function: L(ŷ, y) = 1[ŷ ̸= y], where 1 is the indicator function. With

this particular loss function, the generalization error ϵ and the empirical/training

error ϵ̂ are defined as:

ϵ(h) = E(x,y)∼D1[h(x) ̸= y] = P(x,y)∼D[h(x) ̸= y] (2.1)

ϵ̂(h, S) = 1
n

∑
(x,y)∈S

1[h(x) ̸= y]. (2.2)

A more careful treat also includes the learning algorithm which is defined to be a

mapping A : (X ×Y)∗ → YX from training set of any size to hypotheses. A can be

deterministic or stochastic; a stochastic learning algorithm will map training sets

to a probability distribution over hypotheses, which is the case in PAC-Bayesian

bounds that we introduce in section 2.5.
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2.2 The PAC learning framework

The Probably Approximately Correct (PAC) framework was originally introduced

by Valiant in his seminal work [Valiant, 1984]. Alongside the analysis of uniform

convergence (refer to Section 2.3), these elements constitute the dual pillars of

contemporary statistical learning theory. The PAC learning framework generally

concerns itself with establishing confidence bounds that articulate a connection

between observed quantities (derived from the training set) and the unobserved

generalization error ϵ(h)—the true quantity of interest 1. A general frequentist

formulation of the PAC generalization bounds has the following form [Valle-Pérez

and Louis, 2020]:

Definition 1 (Agnostic PAC generalization bound, general). For any data distribu-

tion D, algorithm A and confidence level δ, the empirical error ϵ̂ and generalization

error ϵ satisfy

PS∼Dn

[
ϵ(A(S))− ϵ̂(A(S)) ≤ CA(S)

nα

]
≥ 1− δ (2.3)

where CA is commonly addressed as the model complexity in the literature, and

0 < α ≤ 1 is the scaling component.

At the core of the bound, the term CA(S) typically measures some notion of

“complexity” of the learned hypothesis which results from the intricate interplay

of data and training algorithms. The component α marks the convergence rate

of learning. Some further assumptions on the data, e.g. the algorithm returns

hypotheses with 0 empirical error (the realizability assumption) can help to prove a

bound with a faster rate. All endeavors aiming to propose generalization bounds

for deep neural networks (DNNs) within the PAC framework fundamentally seek

to enhance the characterization of CA(S). In certain instances, the reliance on the

training set is entirely encapsulated within CA(S), resulting in the omission of 1
nα .

1the original PAC framework also included conditions of the computational efficiency of the
learning algorithm
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2.3 Uniform convergence generalization bounds

The PAC learning framework in equation 2.3 can be equivalently interpreted from

the perspective of sample complexity, which is the number of samples needed for the

learned hypothesis to have a small enough generalization gap. From this angle, PAC

learnability requires that for any data distribution D, there is a learning algorithm

A that with sufficient training data, returns a hypothesis that is arbitrarily close

to the generalization error ϵ̂ [Hellström et al., 2023]. When the PAC learnability

is required for a hypotheses class H, it turns out that it is equivalent to uniform

convergence, defined below:

Definition 2 (Uniform convergence). The hypothesis class H has the uniform

convergence property if for any data distribution D, confidence level δ and scaling

component α, we have

PS∼Dn

[
ϵ(h)− ϵ̂(h) ≤ C(H)

nα

]
≥ 1− δ (2.4)

hold for all h ∈ H.

The nomenclature becomes clear when considering that the generalization

bounds apply uniformly over both data distributions and hypotheses. In such

instances, the model complexity term is determined by the characteristics of

the hypothesis class H rather than individual hypotheses. The simplest form

of uniform convergence generalization bounds can be proven using a combination

of concentration inequalities plus a union bound argument:

Theorem 1 (Agnostic uniform convergence bound). Let H be a finite hypothesis

class. Then, for any data distribution D and confidence level δ > 0, with probability

at least 1− δ over the choices of S, the following inequality holds:

∀h ∈ H, ϵ(h)− ϵ̂(h) ≤
√

log |H|+ log 2
δ

2n (2.5)

The square root appearing in the bound is a result of using the Hoeffding

inequality which bounds the deviation of the empirical average of IID sub-Gaussian

random variables from its expectation. It turns out that when operating in the

realizable regime, this scaling can be improved:
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Theorem 2 (Realizable uniform convergence bound). Let H be a finite hypothesis

class. Assume for any target concept c ∈ H and i.i.d. sample S ∼ Dn the ERM

training algorithm returns a consistent hypothesis h : ϵ̂(h) = 0. Then, for any data

distribution D and confidence level δ > 0, with probability at least 1 − δ over the

choices of S, the following inequality holds:

∀h ∈ H, ϵ(h) ≤
log |H|+ log 1

δ

n
(2.6)

The appeal of uniform convergence bounds is clear: irrespective of the data

or learning algorithm employed, the assurance is that the training loss serves

as a reliable indicator of the generalization loss. Unfortunately, it appears that

such requisites might be too stringent for many contemporary machine learning

scenarios, particularly in the context of deep neural networks. For this model class,

certain data distributions or hypotheses result in suboptimal generalization, even

though naturally occurring data and widely used learning algorithms demonstrate

satisfactory performance [Zhang et al., 2016a]. This observation underscores the

motivation behind generalization bounds built through a non-uniform convergence

analysis, wherein the model complexity terms are tailored to the specific data

distribution and learning algorithm under consideration. Nevertheless, the concept of

uniform generalization has demonstrated significant efficacy across various domains,

offering a definitive characterization of learnability. The model complexity term

in bound 2.5 and 2.6 - the logarithm of the cardinality of the hypothesis class - is

however too crude and useless when H is an infinite set. In the primary scenario of

binary classification, a classical notion of model complexity of the potentially infinite

hypothesis class inspired by uniform convergence is the VC dimension. A stride

in the direction of incorporating data dependence into the model complexity was

introduced by Bartlett and Mendelson [2002] through the notion of the Rademacher

complexity of a hypothesis class. We give a brief overview of them in the following.
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2.3.1 VC Dimension

Focusing on binary classification, if the VC dimension of a hypothesis class H,

denoted as dVC, is finite, then it is guaranteed that H satisfies the uniform

convergence property. We proceed to define the VC dimension through the notion

of growth function [Hellström et al., 2023].

Definition 3 (Growth function and VC dimension). The growth function gH(n) is

defined as the maximum number of different ways in which a dataset of size n can

be classified using functions from H, that is,

gH(n) def= max
S∼Dn

|{(h (x1) , ..., h (xn)) : h ∈ H}|

The VC dimension of H, denoted as dVC is the largest integer such that the above

equality holds. That is,

dVC
def= max {n ∈ N : gH(n) = 2n}

If no such integer exists, we say that dVC =∞.

The intuition of why VC dimension characterizes uniform convergence: If

dVC =∞, we can change the labels of S arbitrarily and still find a hypothesis that

is consistent with S, no matter how large is n. This implies that a hypothesis

with minimal or maximal training loss can be determined, irrespective of the

underlying generalization loss. However, if the VC dimension is finite (and ideally

n ≫ dVC), we cannot adapt arbitrarily to every sample in the training set, but

only to dVC of them. In some sense the remaining n − dVC samples provide a

reasonable estimate of the generalization error. The generalization bound provided

by NV dimension has the following form:

Theorem 3 (Generalization bound from VC dimension). Consider a hypothesis

class H with VC dimension dVC. With confidence δ, for all h ∈ H we have

|ϵ(h)− ϵ̂(h)| ≤
√
C
dVC + log 1

δ

n
(2.7)
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for some constant C. In the realizable case, this bound can be optimized with a

faster convergence rate:

sup
h∈H0(S)

ϵ(h) ≤ C
dVC + log 1

δ

n
(2.8)

where H0(S) is the set of all h ∈ H with zero training error on S.

As one of the most iconic results from classical uniform convergence analysis,

VC dimension provides a guarantee for PAC learnability in general machine learning

tasks. Unfortunately, in the regime of deep learning, such a simple notion of model

complexity which does not incorporate the strong inductive bias of DNNs is bound

to fail. Valle-Pérez and Louis [2020] provided a nice set of desiderata that predictive

theories of generalization in the deep learning regime should satisfy. We can compare

the VC dimension generalization bound against some of their criteria to show why

it is not a good generalization theory for deep learning:

1. The VC bound is data-independent, which means its value stays the same

regardless of the actual data set. The original MNIST and its pixel-shuffled

version will have the same value in VC bound, but their generalization

performances are radically different.

2. dVC typically grows with the number of parameters of DNNs, while in reality

the generalization diminishes with overparameterization.

3. The VC dimension of contemporary DNNs is often significantly larger than the

number of training examples, as noted by Zhang et al. [2016a]. Consequently,

this condition results in vacuous VC bound.

2.3.2 Rademacher Complexity

Now we look at the Rademacher complexity, which still relies on uniform convergence

but incorporates data dependency. It is worth noting that while the (empirical)

Rademacher complexity of a hypothesis class H is defined with respect to a

specific dataset, the commonly used Rademacher complexity takes expectation

over the dataset which cancels the training-set dependence. Like VC dimension,
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the Rademacher complexity also captures the “richness” of a hypothesis class

by measuring the degree to which it can fit random noise. We give the formal

definition below:

Definition 4 (Rademacher complexity). Let H be a family of functions mapping

from X to Y and S = (x1, ..., xn) a fixed sample of size n in X . Let G be the family of

bounded loss functions associated to H, i.e. G = {g : (x, y) 7→ L(h(x), y) : h ∈ H}

and L : Y × Y → R is an arbitrary loss function. The empirical Rademacher

complexity of H with respect to the sample S is defined as:

R̂S(G) = E
σ

[
sup
g∈G

1
n

n∑
i=1

σig (xi)
]
, (2.9)

where σ = (σ1, ..., σn)⊤, with σi independent uniform random variables taking

values in {−1,+1}. The random variables σi are called Rademacher variables.

Furthermore, let D denote the underlying data distribution. For any integer n > 1,

the Rademacher complexity of G is the expectation of the empirical Rademacher

complexity over all samples of size n drawn according to D:

Rn(G) = E
S∼Dn

[
R̂S(G)

]
(2.10)

An intuitive way to understand why the Rademacher complexity can capture

generalization [Hellström et al., 2023]: imagine splitting S randomly into a training

set and a test set by putting xi into the training set if σi = −1 and otherwise

the test set, then the empirical Rademacher complexity is exactly the worst-case

loss discrepancy between the test set and the training set, with expectation taken

over the randomness splitting the dataset. It is almost a generalization measure by

definition. More rigorously, the following generalization bound with Rademacher

complexity has been proven [Mohri et al., 2018]:

Theorem 4 (Rademacher complexity generalization bounds). Let G be a family of

functions mapping from X × Y to [0, 1]. Then for any δ > 0, with probability at
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least 1− δ over the draw of an i.i.d. sample S of size n, each of the following holds

for all g ∈ G:

E[g(x)] ≤ 1
n

n∑
i=1

g (xi) + 2Rn(G) +
√

log 1
δ

2n

and E[g(x)] ≤ 1
n

n∑
i=1

g (xi) + 2R̂S(G) + 3
√

log 2
δ

2n

(2.11)

Although being data-dependent, the Rademacher complexity is still a worst-

case analysis which, given the fact that modern DNNs are more than capable of

expressing functions that generalize badly, can be overly pessimistic in the deep

learning regime. The calculation of Rademacher complexity can not be directly done

as it takes the supreme in the hypothesis class. In practice, Rademacher complexity

generalization bounds for neural networks typically rely on a bound on the norm of

the parameters [Bartlett and Mendelson, 2002, Bartlett et al., 2017c, Neyshabur

et al., 2015c]. We review some representative norm-based bounds in section 2.4.

2.4 Norm-based generalization bounds

Many recent theoretical works on generalization bounds have anchored themselves

in the notion that the parameter norm can serve as a means to bound the

Rademacher complexity of the function class encapsulated by layered neural

networks. Noticeably, Neyshabur et al. [2015c] used an inductive argument to bound

the Rademacher complexity of neural networks using the Rademacher complexity

of linear separators with bounded lp norm. Concretely, they proved an upper bound

for the Rademacher complexity of a set of functions represented by fully connected

networks parameterized by weight matrices with bounded element-wise norm, which

can then be plugged into the general Rademacher complexity bound 2.11 to get

generalization bounds with parameter norm.

Theorem 5 (Neyshabur et al. [2015c]). Denote by N (d,H) the layered fully connected

network with d layers and H nodes per layer. The sublevel sets of the complexity

measure α form a family of hypothesis classes N (d,H)
α<a =

{
f ∈ N d,H | α(f) ≤ a

}
.
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Consider the measure of element-wise weight norm γp,q(W ) = ∏d
k=1 ∥Wk∥p,q. For

any d, q ≥ 1, any 1 ≤ p <∞ and any dataset S = {x1, ..., xn} ⊆ RD we have:

Rn(N (d,H)
γp,q≤γ) ≤

√√√√√γ2
(

2H[ 1
p∗ − 1

q ]+

)2d−2
min {p∗, 4 log(2D)}maxi ∥xi∥2

p∗

n
(2.12)

Furthermore, Bartlett et al. [2017c] proves generalization guarantee using uniform

convergence by bounding the Rademacher complexity of the hypotheses class using

an advanced covering number argument, in which the covering number of the neural

network representation is bounded by the norm of parameters. (Neyshabur et al.

[2017a] proved another bound with very similar dependency on the norms yet using

a different non-uniform convergence PAC-Bayesian approach, in which norm is

invoked to bound the output change under weight perturbation. The latter, which

coincides with the concept of sharpness [Keskar et al., 2016], can be used to calculate

the KL-divergence in the PAC-Bayes bound, with an assumption that the prior

and perturbation are both Gaussian). Many efforts have been made to improve the

applicability of these bounds to realistic scales [Golowich et al., 2018a, Wei and

Ma, 2019, Li et al., 2018c, Cao and Gu, 2019, Allen-Zhu et al., 2019, Daniely and

Granot, 2019].

It is worth noting that in these generalization bounds, the parameter norm serves

merely as an unsolicited proxy/upper bound for the Rademacher complexity, hence

they are still based on uniform convergence, i.e. the bound works for all hypotheses

in the sublevel set uniformly. A recent influential paper [Nagarajan and Kolter,

2019] showed that for SGD-trained networks, uniform convergence provably cannot

explain generalization in the sense that the “best”2 double-sided bounds based on

uniform convergence are almost vacuous for certain families of data distributions. In

appendex J therein they extended this result to double-sided PAC-Bayesian bounds

(see section 2.5) as well, but the main scenarios where they become problematic is
2In Nagarajan and Kolter [2019] this refers to “taking into account the implicit bias of GD to

the fullest extent possible”, which is specific for particular algorithm and dataset (synthetically
constructed in the paper).
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when the empirical error is “much” larger than the generalization error for stochastic

classifiers, which causes double-sided bounds to be vacuous but is less interesting

in practice. A later work [Negrea et al., 2019] showed that one can still make

uniform convergence work for the distributions considered in Nagarajan and Kolter

[2019] by bounding the difference in risk between the hypotheses returned by SGD

and an element from a hypothesis class for which uniform convergence yields tight

bounds, but here the hypothesis class on which uniform convergence bound is

applied is not the learned hypothesis directly.

2.4.1 How hidden symmetries discredit norm-based bounds

Most norm-based generalization bounds are derived for feed-forward neural networks

without many explicit symmetries other than the non-negative homogeneity of

ReLU. A direct consequence is while some of the norm-based measures might

be invariant to the re-balancing of weights norm (α-scaling), e.g. the path-norm

[Neyshabur et al., 2015c], all of them start to make less to none sense when

there are stronger symmetries, such as when the network has normalization layers

(Batch Normalization [Ioffe and Szegedy, 2015] / Group Normalization [Wu and He,

2018] / Layer Normalization [Ba et al., 2016]), the function f(θ) simply becomes

scale-invariant, i.e. for any c ∈ R+, f(θ) = f(cθ).

2.4.2 Weight norm growth under SGD

It has been shown that when using MSE-type loss functions SGD converges to

the minimal-norm solutions under certain conditions [Satpathi and Srikant, 2021,

Gower et al., 2019], while unbounded loss functions without global minimizers

like cross-entropy will push the weights norm to infinity[Lyu and Li, 2019, Ji

and Telgarsky, 2020].

2.5 PAC-Bayesian bounds

Thus far, we have illuminated the constraints of generalization theories for deep

learning grounded in classical uniform convergence analysis. This underscores the
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critical significance of non-uniform generalization theories. Among the existing

non-uniform generalization bounds, PAC-Bayesian bounds are the most promising

ones in that they tend to capture most trends when varying hyperparameters [Jiang

et al., 2019a, Dziugaite et al., 2020c] and can be non-vacuous [Dziugaite and Roy,

2017b, Pérez-Ortiz et al., 2021, Lotfi et al., 2022a, Zhou et al., 2019, Valle-Pérez

and Louis, 2020]. Before delving into PAC-Bayesian bounds, let’s first explore the

shift in framework from uniform convergence.

The fundamental idea to introduce non-uniformity into the PAC framework can

be surprisingly easy: in the union bound argument of deriving the preliminary

uniform convergence generalization bounds 2.6 with the realizability assumption,

if we assume a probability distribution P assigning a nonzero probability to every

hypothesis in a countable hypothesis class containing the target concept c instead

of just assuming they are uniform, we immediately arrive at the simplest non-

uniform generalization bound:

Theorem 6 (Simplest non-uniform bound). For any probability distribution P

assigning a nonzero probability to every hypothesis in a countable hypothesis class

containing a target hypothesis c, and any probability distribution on instances, we

have, for any δ > 0, that with probability at least 1 − δ over the selection of a

sample of n instances, the following holds for all hypotheses h agreeing with c on

that sample:

ϵ(h) ≤
log 1

P (h) + log 1
δ

n
(2.13)

The above non-uniform generalization bound has directly inspired the first

PAC-Bayesian generalization bound proposed in McAllester [1998], in which the

bound 2.13 was coincided as a preliminary theorem. Note that it reduces to the

standard realizable uniform convergence bound 2.6 if P is the uniform distribution

P (h) = 1/|H|. This bound is somewhat special in the sense that the term log 1
P (h)

alone is not a measure of model complexity in common sense because one is allowed

to choose the distribution P arbitrarily. It does, however, admit the idea of inductive
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bias of the learning algorithm by assigning better values of the bound to those

hypotheses that are more favorable than others. If instead of randomly guessing,

we have an (approximate) prior understanding of what hypotheses the algorithm is

likely to produce (and those hypotheses are indeed not uniformly distributed), then

this basic non-uniform bound will perform much better than uniform convergence

bounds. This has been done in recent work by Zhang et al. [2021a], where they

showed that under the NNGP prior [Novak et al., 2018b], this log 1
P (h) term alone

is a much better indicator of generalization than many other flatness-based measures.

The bound 2.13 alongside previously introduced uniform convergence bounds

work for deterministic hypotheses, i.e. they produce deterministic predictions

when prompted with data. PAC-Bayesian bounds, however, apply for stochastic

hypotheses. A stochastic hypothesis h follows a distribution Q, usually called the

posterior in the PAC-Bayes literature, and predicts the label by drawing from Q

each time with different data. The standard form of the general PAC-Bayesian

bound was proven by Maurer [2004].

Theorem 7 (General PAC-Bayes, Maurer [2004]). For any prior P over H, the

following bound on the generalization gap of a stochastic hypothesis h with any

posterior Q holds with probability at least 1− δ over the random choice of S:

KL(Eh∼Q[ϵ(h)],Eh∼Q[ϵ̂(h)]) ≤
KL(Q||P ) + log 1

δ
+ log 2n

n− 1 (2.14)

where KL(Q||P ) is the KL-divergence between Q and P and for a, b ∈ [0, 1] we

abuse the notation and define KL(a, b) ≡ −a log b− (1− a) log(1− b)

At the core of PAC-Bayesian bounds, the KL divergence from the posterior to

the prior KL(Q||P ) can be understood intuitively through a progressive information-

theoretic way [Lotfi et al., 2022a]: in the simple uniform convergence bound 2.5

and 2.6, the complexity term log |H| can be seen as counting the number of bits

needed to specify any hypothesis h ∈ H. If we do not believe that each hypothesis

is equally likely (non-uniform), and consider a prior distribution P over H that
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concentrates around likely hypotheses, we can construct a variable length code that

uses fewer bits to specify those hypotheses. Any given hypothesis h will take log 1
P (h)

bits - we then arrive at the simplest non-uniform bound in eq. 2.13. If we further

consider a distribution of “good” solutions Q, the average number of bits to code a

hypothesis from Q using the prior P is the cross entropy H(Q,P ). This can also

be seen as taking the expectation of log 1
P (h) from the preliminary bound 2.13 over

Q: H(Q,P ) = Eh∼Q[log 1
P (h) ]. We can also get H(Q) bits back from being agnostic

about which sample h ∼ Q to use (hence the bound is for the average of h over Q),

yielding the KL-divergence between Q and P : H(Q,P )−H(Q) = KL(Q||P ). It is

worth noting that despite the name “Bayes” appearing in PAC-Bayesian bounds,

they are still by nature frequentist. The term “prior” is a reference distribution,

and what is called “posterior” is an unrestricted distribution, in the sense that

there is no likelihood-type factor connecting these two distributions as in Bayesian

methods. The bound itself in e.q. 2.14 applies to all possible posteriors uniformly.

With that said, Germain et al. [2016] demonstrated that the optimal PAC-Bayesian

posterior aligns with the Bayesian posterior when the loss function is the negative

log-likelihood.

Depending on the interpretation of the KL divergence, PAC-Bayesian bounds

for DNNs in literature can be roughly divided into two types. From the parameter

space perspective, the prior and posterior are chosen to be the distribution of

parameters, which are usually Gaussian. A typical choice is to set the prior to

be a 0-mean Gaussian with its variance optimized within a predefined set 3, and

the posterior to be a Gaussian centered at the trained parameters [Dziugaite and

Roy, 2017b, Foret et al., 2020a, Kwon et al., 2021]. For instance, in Dziugaite

and Roy [2017b] where they set the parameter-space-based PAC-Bayesian bound

as a training object and optimize it to obtain a nonvacuous bound, they chose
3The assumption of PAC-Bayesian bounds requires that the prior must be chosen without any

knowledge of the data, hence we can not directly optimize the KL term using any data-related
information such as the posterior. Instead we can use this trick to make the bound hold for all
discrete values of variance in this predefined set simultaneously, without violating the assumption.
See [Langford and Caruana, 2001] for more details.
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P = N (0, λI) and Q = N (w, diag(s)) where λ and s are variances and w are the

weights found by the training algorithm (SGD). In this case the KL divergence

between two multivariable Gaussian has a simple form:

KL(N (w, diag(s))||N (w0, λI))

=1
2

(1
λ
∥s∥1 − d+ 1

λ
∥w − w0∥2

2 + d log λ− 1d · log s
) (2.15)

where w ∈ Rd. Another notable example combines the PAC-Bayesian framework

with the worst-case sensitivity to parameter perturbation to get sharpness-based

generalization bound:

Theorem 8 (PAC-Bayesian sharpness bound [Foret et al., 2020a]). For any ρ > 0

and any distribution D, with probability 1− δ over the choice of S ∼ Dn,

LD(w) ≤ max
∥ϵ∥2≤ρ

LS(w + ϵ)+√√√√√√d log
(

1 + ∥w∥2
2

ρ2

(
1 +

√
log(n)
d

)2
)

+ 4 log n
δ

+ Õ(1)

n− 1

(2.16)

where d is the number of parameters and we assume LD(w) ≤ Eϵi∼N (0,ρ) [LD(w + ϵ)]

A commom result of these parameter-space approaches is that a norm term of

the trained parameters is usually unavoidable in the final bound, which undermines

their credibility. See the discussion in section 2.4.1. In section 4.6 we will introduce

a method to break these parameter-space-based PAC-Bayesian bounds.

On the other hand, one can analyze the prior and posterior distribution of the

functions directly. PAC-Bayesian compression bounds are typical examples of

this technique [Zhou et al., 2019, Lotfi et al., 2022a]. In these bounds universal

prior can be used and the posterior is often a point mass at the trained function.

Consequently, the KL term scales with the number of bits needed to specify the

function. Hence the more compressible the model is, the better it generalizes. See

more discussion of compression bounds in section 2.6.1. Another promising function-

space-based PAC-Bayesian bound is the marginal likelihood bound [Valle-Pérez

and Louis, 2020]. The authors consider any prior P (h) and an algorithm which
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samples hypotheses according to the Bayesian posterior with 0− 1 likelihood. The

following generalization bound is proven:

Theorem 9 (marginal-likelihood bound [Valle-Pérez and Louis, 2020]). In binary

classification, for any prior distribution P over a hypothesis class H and any

realizable distribution D, with confidence parameter δ and γ, we have that with

probability at least 1− δ over the choice of sample S of n instances and probability

at least 1− γ over the choice of h:

− ln(1− ϵ(h)) <
ln 1

P (C(S)) + lnn+ ln 1
δ

+ ln 1
γ

n− 1 (2.17)

where h is chosen according to the posterior Q(h) = P (h)∑
h∈C(S) P (h) with 0−1 likelihood.

C(S) is the set of h in H consistent with the sample S and P (C(S)) = ∑
h∈C(S) P (h)

in the marginal likelihood of data S.

The marginal-likelihood bound in e.q. 2.17 is essentially a derandomized version

from Langford and Seeger [2001], where γ accounts for the extra price to pay for

derandomization but is usually negligible. Valle-Pérez and Louis [2020] also proved

the asymptotic optimality of marginal likelihood bound in the sense that if the

generalization error decreases as a power law with training set size n (scales as

n−α), the bound also decreases with the same exponential factor.

Apart from the reasons we discussed in section 2.4.1 of why we should prefer

function-space-based PAC-Bayesian bounds, it is also noted in Valle-Pérez and

Louis [2020] that the KL divergence in function space is provably less or equal than

in the parameter space. This is essentially due to the concavity of the logarithm

function and the proof is straightforward with the Jensen’s inequality applied

once. This means we should always aim at the function-space PAC-Bayesian

bounds wherever it is possible.
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2.6 Other generalization bounds and measures

2.6.1 Generalization bounds based on compression

The idea that compressible machine learning models tend to generalize better

dates back to an early formalization called the minimum description length (MDL)

principle [Rissanen, 1986, Hinton and van Camp, 1993]. An intuitive way to

understand why it is the case: in the simple concentration bound + union bound

argument, the main element in the bound is log |H| where H is the hypotheses class.

Now if these hypotheses can be represented in a quantized fashion that takes q

parameters and each of them has r options, then the term becomes q log r for this

compressed hypotheses class. The more compressible the model is the smaller the

bound will be. More recently Arora et al. [2018a] revisited this idea and found that

the compressibility of a model is linked to its noise stability. Their bound, being

deterministic, is applied to the smaller compressed network. Subsequently, Zhou

et al. [2019] developed a stochastic PAC-Bayes compression bound in which the

KL divergence term is bounded by the compressed code length after encoding the

compressed weights using some prefixed coding scheme. The (degenerate) Gaussian

posterior is the same as used in [Dziugaite and Roy, 2017b], while the prior is a

weighted mixture of Gaussians with the weights exponentially decaying with code

length. This way they obtained a bound less than 1 on the ImageNet. Recently,

Lotfi et al. [2022a] further improved the previous results by using a more aggressive

setting including a faster-decaying prior, training within the intrinsic dimension

[Li et al., 2018a] and stronger quantization scheme.

2.7 Previous empirical work on comparing gen-
eralization measures

In this section we review some large-scale empirical works aimed at comparing

generalization measures. While it’s not uncommon for theoretical work to also

present empirical evaluations of their proposed measures [Arora et al., 2018a,

Bartlett et al., 2017c, Dziugaite and Roy, 2017b, Neyshabur et al., 2017b, 2019a],
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most of them are limited to experiment settings where only favorable results

are shown. Jiang et al. [2019a] performed the first large-scale study to test the

correlation of different measures with the generalization of deep CNNs with varying

hyperparameters. Two metrics were used to quantify this correlation: the granulated

Kendall’s coefficient and the conditional mutual information (CMI). Even though

the latter one is perhaps a more principled metric in that it hopes to capture any

causal relationships between measures and generalization, the CMI is actually

agnostic to the direction of correlation and it shows some conflicting results with

the more intuitive granulated Kendall’s coefficient. We will mainly introduce the

granulated Kendall’s coefficient in the following which is also the main metric in

the authors’ analysis.

The granulated Kendall’s coefficient Kendall’s correlation coefficient is an

effective tool widely used to capture the relationship between 2 rankings of a set

of objects. Given a set of models trained with a set of hyperparameters Θ, the

Kendall’s coefficient between their associated generalization gap {g(θ) | θ ∈ Θ}

and their respective values of the measure {µ(θ) | θ ∈ Θ} is defined through

constructing a set T of all measure-generalization pairs:

T ≜ ∪θ∈Θ{(µ(θ), g(θ))}

An ideal complexity measure must be such that, for any pair of trained models, if

µ(θ1) > µ(θ2), then so is g(θ1) > g(θ2). The Kendall’s coefficient is then defined

as the degree of such consistency holds among the elements of T .

τ(T ) ≜ 1
|T |(|T | − 1)

∑
(µ1,g1)∈T

∑
(µ2,g2)∈T \(µ1,g1)

sign (µ1 − µ2) sign (g1 − g2) (2.18)

i.e. this is the averaged sign error of all possible combinations of two different

models. Because the set T contains models with varying hyperparameters of

varying hyperparameter types, the ablation study becomes harder. The authors

hence proposed a granulated version of Kendall’s coefficient which computes τ

within each hyperparameter type and then takes the average across different types.
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Formally, if we partition Θ into Θis according to different hyperparameter types

(e.g. learning rate, depth etc.) and calculate the average Kendall’s coefficient of

models that only differ from each other with a particular hyperparameter type i:

ψi ≜
1
mi

∑
θ1∈Θ1

. . .
∑

θi−1∈Θi−1

∑
θi+1∈Θi+1

. . .
∑

θT ∈ΘT

τ (∪θi∈Θi
{(µ(θ), g(θ))}) (2.19)

where mi ≜ |Θ1 × · · · ×Θi−1 ×Θi+1 × · · · ×ΘT |, the granulated Kendall’s coeffi-

cient Ψ is defined as the average of ψ across all hyperparameter axes:

Ψ ≜ 1
T

T∑
i=1

ψi (2.20)

where T is the number of types of hyperparameters.

The authors of Jiang et al. [2019a] provided a thought experiment to justify their

choice of the granulated version of Kendall’s τ coefficient over the original one:

suppose there exists a measure that perfectly captures the depth of the network

while producing random prediction if 2 networks have the same depth, this measure

would do reasonably well in terms of τ(T ) but much worse in terms of Ψ. This is

to say that while a perfect measure can achieve a good score in both τ(T ) and Ψ, a

bad measure as described in the thought experiment will achieve only slightly worse

τ(T ) score but a much worse Ψ score.

With this methodology, they empirically found that

• Many norm-based measures not only perform poorly but negatively correlate

with generalization;

• Sharpness-based measures like PAC-Bayesian bounds or the worst-case sharp-

ness as proposed by Keskar et al. [2016] perform best under their metric;

• Some measures related to the optimization procedures can also be predictive

of generalization, but the theories behind these measures tend to be elusive.
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Building on Jiang et al. [2019a], Dziugaite et al. [2020c] took a slightly different

approach by critiquing the use of averaging in the evaluation of predictions made

by those generalization measures. Instead, they argue that a theory—realized by a

generalization measure—is as strong as its weakest part. The “deceptively minor”

changes they made can be summarized into the following:

• Look at the worst instead of the average sign-error with respect to hyperpa-

rameter types. Formally, their definition of robust sign-error is

Ψrobust ≜ max
i∈[T ]

1− ψi
2 (2.21)

• A filter is also applied on samples to account for Monte Carlo noise. Concretely,

they use a weighted average in the calculation of ψi where the weights are

proportional to the difference in generalization error, and simply discard

model pairs whose generalization error difference is too small (under a given

threshold).

Indeed, this worst-case analysis of generalization measures can reveal the failure of

some measures that otherwise would have been obscured by the averaging analysis

adopted by Jiang et al. [2019a], e.g. some bounds based on Frobenius norms can even

increase with train set size, but if looked at on average with other hyperparameter

axes this surprising failure may not be as noticeable. In fact, Dziugaite et al. [2020c]

have concluded that no measure that they have considered is robust under this

worst-case analysis as there is at least one environment in which the measure always

incorrectly predicts the direction of change in generalization. That being said,

they also reconfirmed some main points made in Jiang et al. [2019a] such as the

comparatively better performance of the path-norm and PAC-Bayes-based measures

and the poor performance of many other norm-based measures.

Apart from the aforementioned quantitative empirical work, Valle-Pérez and Louis

[2020] adopted a different half-qualitative methodology by proposing a set of

desiderata that a good predictive generalization theory should satisfy. These

desiderata are:
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1. Data complexity: A good generalization predictor should scale with data

complexity correctly. This includes datasets that come with naturally different

complexity, e.g. CIFAR10 is typically harder to classify than MNIST for a fixed

DNN, as well as data with different noise, e.g. pixel-shuffled or label-corrupted

data will likely be harder than the noise-free version.4

2. Architectures: The predicted error should effectively capture variations across

different architectures. Moreover, a perplexing characteristic of DNNs is

their weak dependence on the number of parameters, particularly when the

system is sufficiently large. Given that the inquiry into why DNNs generalize

effectively in the overparameterized regime is a central question in DNN theory,

it becomes crucial for a predicted error to replicate this relative insensitivity

to the number of parameters.

3. Training set size: The predicted error should correctly scale with training set

size, not only in direction but preferably also in speed. Empirical findings

suggest that the generalization error frequently exhibits a power law decay

concerning the training set size [Hestness et al., 2017, Rosenfeld et al., 2019,

Kaplan et al., 2020]. This is not captured by simply considering the sign-error.

4. Optimization algorithms: The theory should effectively account for variations

in generalization resulting from different optimization algorithms. Distinct

optimization algorithms employed in training DNNs, along with varied choices

of training hyperparameters such as SGD batch size, learning rates, or

diverse regularization techniques, can yield differences in generalization. The

theoretical framework should strive to predict these differences.

5. Non-vacuous: For theoretically rigorous generalization bounds, the predicted

error upper bound should be quantitatively close to the true error.
4In Jiang et al. [2019a] it was argued that artificially modifying the data complexity is not

representative of the typical setting. However, this stance appears to be in contrast to their broader
goal of identifying the causal mechanisms behind generalization, which are likely to manifest in
scenarios beyond “natural” settings, such as those involving noisy data.
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6. Computation efficiency: The predicted error should be efficiently computable.

This is important for practical applications, e.g. model selection.

7. Rigorousness: We should prefer rigorous theories over measures based on

intuition or unverified assumptions.

After setting up the framework for testing generalization theories, the authors listed

some representative generalization bounds from different categories, mostly in an

abstract form (e.g. only introducing what factors the bounds depend on without

detailing the full dependency) and compared them against the desiderata in a

qualitative manner. They did extensive experiments on one particular bound - the

marginal likelihood bound (e.q. 2.17) - and found that this is the best one according

to the desiderata. Note that this optimality of the marginal likelihood bound does

not imply that it fulfills all the desiderata that they proposed, but just most of them.



3
Why Flatness Does and Does Not

Correlate with Generalization for Deep
Neural Networks

Overview

The intuition that local flatness of the loss landscape is correlated with better

generalization for deep neural networks (DNNs) has been explored for decades,

spawning many different flatness measures. Recently, this link with generalization

has been called into question by a demonstration that many measures of flatness

are vulnerable to parameter re-scaling which arbitrarily changes their value without

changing neural network outputs. Here we show that, in addition, some popular

variants of stochastic gradient descent (SGD) such as Adam and Entropy-SGD

can also break the flatness–generalization correlation. As an alternative to flatness

measures, we use a function-based picture and propose using the log of the Bayesian

prior upon initialization, logP (f), as a predictor of the generalization when a DNN

converges on function f after training to zero error. The prior is directly proportional

to the Bayesian posterior for functions that give zero error on a test set. For the case

of image classification, we show that logP (f) is a significantly more robust predictor

of generalization than flatness measures are. Whilst local flatness measures fail under

28
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parameter re-scaling, the prior/posterior, which is global quantity, remains invariant

under re-scaling. Moreover, the correlation with generalization as a function of

data complexity remains good for different variants of SGD.

3.1 Chapter introduction

Among the most important theoretical questions in the field of deep learning are:

1) What characterizes functions that exhibit good generalization?, and 2) Why do

overparameterized deep neural networks (DNNs) converge to this small subset of

functions that do not overfit? Perhaps the most popular hypothesis is that good

generalization performance is linked to flat minima. In pioneering works [Hinton

and van Camp, 1993, Hochreiter and Schmidhuber, 1997a], the minimum description

length (MDL) principle [Rissanen, 1978] was invoked to argue that since flatter

minima require less information to describe, they should generalize better than

sharp minima. Most measures of flatness approximate the local curvature of the

loss surface, typically defining flatter minima to be those with smaller values of

the Hessian eigenvalues [Keskar et al., 2016, Wu et al., 2017, Zhang et al., 2018,

Sagun et al., 2016, Yao et al., 2018].

Another commonly held belief is that stochastic gradient descent (SGD) is

itself biased towards flatter minima, and that this inductive bias helps explain

why DNNs generalize so well [Keskar et al., 2016, Jastrzebski et al., 2018, Wu

et al., 2017, Zhang et al., 2018, Yao et al., 2018, Wei and Schwab, 2019, Maddox

et al., 2020]. For example Keskar et al. [2016] developed a measure of flatness that

they found correlated with improved generalization performance when decreasing

batch size, suggesting that SGD is itself biased towards flatter minima. We note

that others [Goyal et al., 2017, Hoffer et al., 2017, Smith et al., 2017a, Mingard

et al., 2021] have argued that the effect of batch size can be compensated by

changes in learning rate, complicating some conclusions from Keskar et al. [2016].

Nevertheless, the argument that SGD is somehow itself biased towards flat minima

remains widespread in the literature.
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In an important critique of local flatness measures, Dinh et al. [2017a] pointed

out that DNNs with ReLU activation can be re-parameterized through a simple

parameter-rescaling transformation.

Tα : (w1,w2) 7→
(
αw1, α

−1w2
)

(3.1)

where w1 are the weights between an input layer and a single hidden layer, and w2

are the weights between this hidden layer and the outputs. This transformation can

be extended to any architecture having at least one single rectified network layer.

The function that the DNN represents, and thus how it generalizes, is invariant under

parameter-rescaling transformations, but the derivatives w.r.t. parameters, and

therefore many flatness measures used in the literature, can be changed arbitrarily.

Ergo, the correlation between flatness and generalization can be arbitrarily changed.

Several recent studies have attempted to find “scale invariant” flatness metrics

[Petzka et al., 2019, Rangamani et al., 2019, Tsuzuku et al., 2019]. The main idea

is to multiply layer-wise Hessian eigenvalues by a factor of ∥wi∥2, which renders

the metric immune to layer-wise re-parameterization. While these new metrics

look promising experimentally, they are only scale-invariant when the scaling is

layer-wise. Other methods of rescaling (e.g. neuron-wise rescaling) can still change

the metrics, so this general problem remains unsolved.

3.1.1 Main contributions

1. For a series of classic image classification tasks (MINST and CIFAR-10) we

show that flatness measures change substantially as a function of epochs.

Parameter re-scaling can arbitrarily change flatness, but it quickly recovers

to a more typical value under further training. We also demonstrate that

some variants of SGD exhibit significantly worse correlation of flatness with

generalization than found for vanilla SGD. In other words popular measures

of flatness sometimes do and sometimes do not correlate with generalization.

This mixed performance problematizes a widely held intuition that DNNs

generalize well fundamentally because SGD or its variants are themselves

biased towards flat minima.
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2. We next study the correlation of the Bayesian prior P (f) with the generaliza-

tion performance of a DNN that converges to that function f . This prior is

the weighted probability of obtaining function f upon random sampling of

parameters. Motivated by a theoretical argument derived from a non-uniform

convergence generalization bound, we show empirically that logP (f) correlates

robustly with test error, even when local flatness measures miserably fail, for

example upon parameter re-scaling. For discrete input/output problems (such

as classification), P (f) can also be interpreted as the weighted “volume” of

parameters that map to f . Intuitively, we expect local flatness measures to

typically be smaller (flatter) for systems with larger volumes. Nevertheless,

there may also be regions of parameter space where local derivatives and

flatness measures vary substantially, even if on average they correlate with the

volume. Thus flatness measures can be viewed as (imperfect) local measures

of a more robust predictor of generalization, the volume/prior P (f).

3.2 Definitions and notation

3.2.1 Supervised learning

For a typical supervised learning problem, the inputs live in an input domain X ,

and the outputs belong to an output space Y. For a data distribution D on the

set of input-output pairs X × Y, the training set S is a sample of n input-output

pairs sampled i.i.d. from D, S = {(xi, yi)}ni=1 ∼ Dn, where xi ∈ X and yi ∈ Y . The

output of a DNN on an input xi is denoted as ŷi. Typically a DNN is trained by

minimising a loss function L : Y × Y → R, which measures differences between

the output ŷ ∈ Y and the observed output y ∈ Y, by assigning a score L(ŷ, y)

which is typically zero when they match, and positive when they don’t match.

DNNs are typically trained by using an optimization algorithm such as SGD to

minimize the loss function on a training set S. The generalization performance of the

DNN, which is theoretically defined over the underlying (typically unknown) data

distribution D but is practically measured on a test set E = {(x′
i, y

′
i)}

|E|
i=1 ∼ D|E|.

For classification problems, the generalization error is practically measured as
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ϵ(E) = 1
|E|
∑
x′

i∈E 1[ŷi ̸= y′
i], where 1 is the standard indicator function which is

one when its input is true, and zero otherwise.

3.2.2 Flatness measures

Perhaps the most natural way to measure the flatness of minima is to consider

the eigenvalue distribution of the Hessian Hij = ∂2L(w)/∂wi∂wj once the learning

process has converged (typically to a zero training error solution). Sharp minima

are characterized by a significant number of large positive eigenvalues λi in the

Hessian, while flat minima are dominated by small eigenvalues. Some care must

be used in this interpretation because it is widely thought that DNNs converge to

stationary points that are not true minima, leading to negative eigenvalues and

complicating their use in measures of flatness. Typically, only a subset of the

positive eigenvalues are used [Wu et al., 2017, Zhang et al., 2018]. Hessians are

typically very expensive to calculate. For this reason, Keskar et al. [2016] introduced

a computationally more tractable measure called “sharpness”:

Definition 5 (Sharpness). Given parameters w′ within a box in parameter space

Cζ with sides of length ζ > 0, centered around a minimum of interest at parameters

w, the sharpness of the loss L(w) at w is defined as:

sharpness :=
maxw′∈Cζ

(L(w′)− L(w))
1 + L(w) × 100.

In the limit of small ζ, the sharpness relates to the spectral norm of the

Hessian [Dinh et al., 2017a]:

sharpness ≈ ∥|(∇
2L(w))|∥2 ζ

2

2(1 + L(w)) × 100.

The general concept of flatness can be defined as 1/sharpness, and that is how

we will interpret this measure in the rest of this paper.
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3.2.3 Functions and the Bayesian prior

We first clarify how we represent functions in the rest of paper using the notion of

restriction of functions. A more detailed explanation can be found in Section B.3.

Here we use binary classification as an example:

Definition 6 (Restriction of functions to C). [Shalev-Shwartz and Ben-David,

2014]

Consider a parameterized supervised model, and let the input space be X and the

output space be Y, noting Y = {0, 1} in binary classification setting. The space of

functions the model can express is a (potentially uncountably infinite) set F ⊆ Y |X |.

Let C = {c1, . . . , cn} ⊂ X . The restriction of F to C is the set of functions from C

to Y that can be derived from functions in F :

FC = {(f (c1) , . . . , f (cn)) : f ∈ F}

where we represent each function from C to Y as a vector in Y |C|.

For example, for binary classification, if we restrict the functions to S +E, then

each function in FS+E is represented as a binary string of length |S|+ |E|. In the

rest of paper, we simply refer to “functions” when we actually mean the restriction

of functions to S + E, except for the Boolean system in Section 3.5.1 where no

restriction is needed. See Section B.3 for a thorough explanation.

For discrete functions, we next define the prior probability P (f) as

Definition 7 (Prior of a function). Given a prior parameter distribution Pw(w)

over the parameters, the prior of function f can be defined as:

P (f) :=
∫
1[M(w) = f ]Pw(w)dw. (3.2)

where 1 is an indicator function:1[arg] = 1 if its argument is true or 0 otherwise;

M is the parameter-function map whose formal definition is in Section B.2. Note

that P (f) could also be interpreted as a weighted volume V (f) over parameter space.
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If Pw(w) is the distribution at initialization, the P (f) is the prior probability of

obtaining the function at initialization. We normally use this parameter distribution

when interpreting P (f).

Remark. Definition 7 works in the situation where the space X and Y are discrete,

where P (f) has a prior probability mass interpretation. This is enough for most

image classification tasks. Nevertheless, we can easily extend this definition to the

continuous setting, where we can also define a prior density over functions upon

random initialization, with the help of Gaussian Process [Rasmussen, 2003]. For the

Gaussian Process prior see Section B.4. However, in this work, we focus exclusively

on the classification setting, with discrete inputs and outputs.

3.2.4 Link between the prior and the Bayesian posterior

Due to their high expressivity, DNNs are typically trained to zero training error

on the training set S. In this case the Bayesian picture simplifies Valle-Pérez et al.

[2018], Mingard et al. [2021] because if functions are conditioned on zero error on S,

this leads to a simple 0-1 likelihood P (S|f), indicating whether the data is consistent

with the function. Bayesian inference can be used to calculate a Bayesian posterior

probability PB(f |S) for each f by conditioning on the data according to Bayes rule.

Formally, if S = {(xi, yi)}ni=1 corresponds to the set of training pairs, then

PB(f |S) =
P (f)/P (S) if ∀i, f(xi) = yi

0 otherwise .

where P (f) is the Bayesian prior and P (S) is called the marginal likelihood or

Bayesian evidence. If we define, the training set neutral space NS as all parameters

that lead to functions that give zero training error on S, then P (S) =
∫

NS
Pw(w)dw.

In other words, it is the total prior probability of all functions compatible with

the training set S [Valle-Pérez et al., 2018, Mingard et al., 2021]. Since P (S) is

constant for a given S, PB(f |S) ∝ P (f) for all f consistent with that S.
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Figure 3.1: Schematic loss landscape for three functions that have zero-error
on the training set. It illustrates how the relative sizes of the volumes of their basins of
attraction VSGD(fi) correlate with the volumes V (fi) (or equivalently their priors P (fi))
of the basins, and that, on average, larger V (fi) or P (fi) implies flatter functions, even
if flatness can vary locally. Note that the loss L(w) can vary within a region where the
DNN achieves zero classification error on S.

3.3 The correlation between the prior and gen-
eralization

This link between the prior and the posterior is important, because it was empirically

found in an extensive set of experiments by [Mingard et al., 2021] that, for popular

architectures and data sets,

PB(f |S) ≈ PSGD(f |S), (3.3)

where PSGD(f |S) is the probability that a DNN trained with SGD converges on

function f , when trained to zero error on S. In other words, to first order, SGD

appears to find functions with a probability predicted by the Bayesian posterior,

and thus with probabilities directly proportional to P (f). The authors traced

this behaviour to the geometry of the loss-landscape, as follows. Some general

observations from algorithmic information theory (AIT) [Valle-Pérez et al., 2018]

as well as direct calculations [Mingard et al., 2019] predict that the priors of

functions should vary over many orders of magnitude. When this is the case, it is

reasonable to expect that the probabilities by which an optimizer finds different

functions is affected by these large differences. This is related to a mechanism

identified previously in evolutionary dynamics, where it is called the arrival of the
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frequent [Schaper and Louis, 2014]. We illustrate this principle in Fig. 3.1 where we

intuitively use the language of “volumes". We expect that the relative sizes of the

basins of attraction VSGD(f), defined as the set of initial parameters for which a

DNN converges to a certain function f , is proportional, to first order, to those of the

priors P (f) (or equivalently the “volumes”). To second order there are, of course,

many other features of a search method and a landscape that affect what functions

a DNN converges on, but when the volumes/priors vary by so many orders of

magnitude then we expect that to first order PSGD(f) ≈ PB(f |S) ∝ P (f) = V (f).

Given that the P (f) of a function helps predict how likely SGD is to converge

on that function, we can next ask how P (f) correlates with generalization. Perhaps

the simplest argument is that if DNNs trained to zero error are known to generalize

well on unseen data, then the probability of converging on functions that generalize

well must be high. The P (f) of these functions must be larger than the priors

of functions that do not generalize well.

Can we do better than this rather simplistic argument? One way forward is

empirical. Mingard et al. [2021] showed that log (PB(f |S)) correlates quite tightly

with generalization error. These authors also made a theoretical argument based

on the Poisson-Binomial nature of the error distribution to explain this log-linear

relationship, but this approach needs further work.

One of the best overall performing predictors in the literature for generalization

performance on classification tasks is the marginal likelihood PAC-Bayes bound

from [Valle-Pérez et al., 2018, Valle-Pérez and Louis, 2020]. It is non-vacuous,

relatively tight, and can capture important trends in generalization performance

with training set size (learning curves), data complexity, and architecture choice (see

also [Liu et al., 2021]). However, the prediction uses the marginal likelihood P (S)

defined through a sum over all functions that produce zero error on the training set.

Here we are interested in the generalization properties of single functions.

One way forward is to use a simple nonuniform bound which to the best of our

knowledge was first published in [McAllester, 1998] as a preliminary theory to the

full PAC-Bayes theorems. For any countable function space F , any distribution
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P̃ , and for any selection of a training set S of size n under probability distribution

D, it can be proven that for all functions f that give zero training error:

∀D,PS∼Dn

ϵS,E(f) ≤
ln 1

P̃ (f) + ln 1
δ

n

 ≥ 1− δ (3.4)

for δ ∈ (0, 1). Here we consider a space FS,E of functions with all possible outputs

on the inputs of a specific E and zero error on a specific S; ϵS,E(f) is the error

measured on E + S, which as the error on S is 0, equals the error on the test set

E. This error will converge to the true generalization error on all possible inputs

as |E| increases. Valle-Pérez and Louis [2020] showed this bound has an optimal

average generalization error when P̃ (f) mimics the probability distribution over

functions of the learning algorithm. If PSGD(f) ≈ PB(f |S) ∝ P (f), then the best

performance of the bound is approximately when P̃ (f) in Eq. (3.4) is the Bayesian

prior P (f). Thus this upper bound on ϵS,E(f) scales as − log (P (f)).

3.4 Flatness, priors and generalization

The intuition that larger P (f) correlates with greater flatness is common in the

literature, see e.g. Hochreiter and Schmidhuber [1997a], Wu et al. [2017], where

the intuition is also expressed in terms of volumes. If volume/P (f) correlates with

generalization, we expect flatness should too. Nevertheless, local flatness may still

vary significantly across a volume. For example Izmailov et al. [2018a] show explicitly

that even in the same basin of attraction, there can be flatter and sharper regions.

We illustrate this point schematically in Fig. 3.1, where one function clearly has a

larger volume and on average smaller derivatives of the loss w.r.t. the parameters

than the others, and so is flatter on average. But, there are also local areas within the

zero-error region where this correlation does not hold. One of the main hypotheses

we will test in this paper is that the correlation between flatness and generalization

can be broken even when the generalization-prior correlation remains robust.
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3.5 Experimental Results

3.5.1 Prior/volume - flatness correlation for Boolean system

We first study a model system for Boolean functions of size n = 7, which is small

enough to directly measure the prior by sampling [Valle-Pérez et al., 2018]. There

are 27 = 128 possible binary inputs. Since each input is mapped to a single binary

output, there are 2128 = 3.4 × 1034 possible functions f . It is only practically

possible to sample the prior P (f) because it is highly biased [Valle-Pérez et al.,

2018, Mingard et al., 2019], meaning a subset of functions have priors much higher

than average. For a fully connected network (FCN) with two hidden layers of

40 ReLU units each (which was found to be sufficiently expressive to represent

almost all possible functions) we empirically determined P (f) using 108 random

samples of the weights w over an initial Gaussian parameter distribution Pw(w)

with standard deviation σw = 1.0 and offset σb = 0.1.

We also trained our network with SGD using the same initialization and recorded

the top-1000 most commonly appearing output functions with zero training error on

all 128 outputs, and then evaluated the sharpness/flatness using Definition 5 with

an ϵ = 10−4. For the maximization process in calculating sharpness/flatness, we

ran SGD for 10 epochs and make sure the max value ceases to change. As Fig. 3.2

demonstrates, the flatness and prior correlate relatively well; Fig. 3.7 in the appendix

shows a very similar correlation for the spectral norm of the Hessian. Note that

since we are studying the function on the complete input space, it is not meaningful

to speak of correlation with generalization. However, since for this system the

prior P (f) is known to correlate with generalization [Mingard et al., 2021], the

correlation in Fig. 3.2 also implies that these flatness measures will correlate with

generalization, at least for these high P (f) functions.

3.5.2 Priors, flatness and generalization for MNIST and
CIFAR-10

We next study the correlation between generalization, flatness and logP (f) on

the real world datasets MNIST [LeCun et al., 1998] and CIFAR-10 [Krizhevsky et al.,
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Figure 3.2: The correlation between flatness and the Bayesian prior for the
n = 7 Boolean system. The functions are defined on the full space of 128 possible
inputs. The priors P (f) are shown for the 1000 most frequently found functions by
SGD from random initialization for a two hidden layer FCN, and correlate well with
log(flatness). The function the largest prior, which is the most “flat” is the trivial one
of all 0s or all 1s. An additional feature is two offset bands caused by a discontinuity of
Boolean functions. Most functions shown are mainly 0s or mainly 1s, and the two bands
correspond to an even or odd number of outliers (e.g. 1’s when the majority is 0s).

(a) (b) (c)

(d) (e) (f)

Figure 3.3: The correlation between log P (f), sharpness and generalization
accuracy on MNIST and CIFAR-10. For MNIST |S|=500, |E|=1000; for CIFAR-
10 |S|=5000, |E|=2000. The attack set size |A| varies from 0 to |S| and generates
functions with different generalization performance. (a)-(c) depicts the correlation between
generalization and log P (f) for FCN on MNIST, FCN on CIFAR-10 and Resnet-50 on
CIFAR-10, respectively. (d)-(f) show the correlation between generalization and flatness
for FCN on MNIST, FCN on CIFAR-10, and Resnet50 on CIFAR-10, respectively. In
this experiment, all DNNs are trained with vanilla SGD.
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2009].

Because we need to run many different experiments, and measurements of

the prior and flatness are computationally expensive, we simplify the problem by

binarizing MINST (one class is 0-4, the other is 5-9) and CIFAR-10 (we only study

two categories out of ten: cars and cats). Also, our training sets are relatively

small (500/5000 for MNIST/CIFAR-10, respectively) but we have checked that our

overall results are not affected by these more computationally convenient choices.

In Appendix Fig. 3.22 we show results for MNIST with |S| = 10000.

We use two DNN architectures: a relatively small vanilla two hidden-layer FCN

with 784 inputs and 40 ReLU units in each hidden layer each, and also Resnet-

50 [He et al., 2016], a 50-layer deep convolutional neural network, which is much

closer to a state of the art (SOTA) system.

We measure the flatness on cross-entropy (CE) loss at the epoch where SGD

first obtains zero training error. Because the Hessian is so expensive to calculate,

we mainly use the sharpness/flatness measure (Definition 5) which is proportional

to the Frobenius norm of the Hessian. The final error is measured in the standard

way, after applying a sigmoid to the last layer to binarize the outputs.

To measure the prior, we use the Gaussian processes (GPs) to which these

networks reduce in the limit of infinite width [Lee et al., 2017, Matthews et al.,

2018, Novak et al., 2018b]. As demonstrated in Mingard et al. [2021], GPs can be

used to approximate the Bayesian posteriors PB(f |S) for finite width networks. For

further details, we refer to the original papers above and to Section B.4.

In order to generate functions f with zero error on the training set S, but

with diverse generalization performance, we use the attack-set trick from Wu et al.

[2017]. In addition to training on S, we add an attack set A made up of incorrectly

labelled data. We train on both S and A, so that the error on S is zero but

the generalization performance on a test set E is reduced. The larger A is w.r.t.

S, the worse the generalization performance. As can be seen in Fig. 3.3(a)-(c),

this process allows us to significantly vary the generalization performance. The
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correlation between logP (f) and generalization error is excellent over this range,

as expected from our arguments in Section 3.3.

Figs.3.3(d)-(f) show that the correlation between flatness and generalization

is much more scattered than for logP (f). In Section 3.8 we also show the direct

correlation between logP (f) an flatness which closely resembles Fig. 3.3(d)-(f)

because V (f) and ϵ correlate so tightly.

3.5.3 The effect of optimizer choice on flatness

(a) (b) (c)

(d) (e) (f)

Figure 3.4: SGD-variants can break the flatness-generalization correlation,
but not the log P (f)-generalization correlation. The figures show generalization v.s.
log P (f) or flatness for the FCN trained on (a) and (d) – MNIST with Entropy-SGD; (b)
and (e) – MNIST with Adam; (c) and (f) – CIFAR-10 with Adam. for the same S and E
as in Fig. 3.3. Note that the correlation with the prior is virtually identical to vanilla
SGD, but that the correlation with flatness measures changes significantly.

Given that we test the effect of changing the optimizer from the vanilla

SGD we used in Fig. 3.3. We use Adam [Kingma and Ba, 2014], and entropy-

SGD [Chaudhari et al., 2019] which includes an explicit term to maximize the

flatness. Both SGD variants show good optimization performance for the standard

default Tensorflow hyperparameters we use. Their generalization performance,

however, does not significantly vary from plain SGD, and this is reflected in the
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priors of the functions that they find. More importantly, fig. 3.4 shows that the

generalization-flatness correlation can be broken by using these optimizers, whereas

the logP (f)-generalization correlation remains intact. A similar breakdown of the

correlation persists upon overtraining and can also be seen for flatness measures

that use Hessian eigenvalues (Fig. 3.14 to Fig. 3.19).

Changing optimizers or changing hyperparameters can, of course, alter the

generalization performance by small amounts, which may be critically important

in practical applications. Nevertheless, as demonstrated in Mingard et al. [2021],

the overall effect of hyperparameter or optimizer changes is usually quite small

on these scales. The large differences in flatness generated simply by changing

the optimizer suggests that flatness measures may not always reliably capture the

effects of hyperparameter or optimizer changes. Note that we find less deterioration

when comparing SGD to Adam for Resnet50 on CIFAR-10, (Fig. 3.20). The exact

nature of these effects remains subtle.

3.5.4 Temporal behavior of sharpness and logP (f)

In the experiments above, the flatness and logP (f) metrics are calculated at the

epoch where the system first reaches 100% training accuracy. In Fig. 3.5, we measure

the prior and the flatness for each epoch for our FCN, trained on MNIST (with

no attack set). Zero training error is reached at epoch 140, and we overtrain for a

further 1000 epochs. From initialization, both the sharpness measure from Definition

2.1, and logP (f) reduce until zero-training error is reached. Subsequently, logP (f)

stays constant, but the cross-entropy loss continues to decrease, as expected for

such classification problems. This leads to a reduction in the sharpness measure

(greater flatness) even though the function, its prior, and the training error don’t

change. This demonstrates that flatness is a relative concept that depends, for

example, on the duration of training. In Figs. 3.14 and 3.15 we show for an FCN on

MNIST that the quality of flatness-generalization correlations are largely unaffected

by overtraining, for both SGD and Adam respectively, even though the absolute

values of the sharpness change substantially.
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Figure 3.5: How flatness evolves with epochs. At each epoch we calculate the
sharpness measure from Definition 2.1 (sharpness is the inverse of flatness) and the prior
for our FCN on MNIST with |S| = 500. The green dashed line denotes epoch 140 where
zero-training error is reached and post-training starts. The red dashed line denotes epoch
639 where α-scaling takes place with α = 5.9. Upon parameter-rescaling, the sharpness
increases markedly, but then quickly decreases again. The inset shows that the prior
is initially unchanged after parameter-rescaling. However, large gradients mean that in
subsequent SGD steps, the function (and its prior) changes, before recovering to (nearly)
the same function and log P (f).

One of the strong critiques of flatness is that re-parameterisations such as the

parameter-rescaling transformation defined in Eq. (3.1) can arbitrarily change local

flatness measures [Dinh et al., 2017a]. Fig. 3.5 shows that parameter-rescaling

indeed leads to a spike in the sharpness measure (a strong reduction in flatness). As

demonstrated in the inset, the prior is initially invariant upon parameter-rescaling

because f(w) is unchanged. However, parameter-rescaling can drive the system to

unusual parts of the volume with steep gradients in the loss function, which mean

that SGD falls off the zero training error manifold. logP (f) goes up because it is

more likely to randomly fall onto large V (f) functions. However, the system soon

relaxes to essentially the same function and logP (f). In Fig. B.2, we show that it

is possible to obtain a spike in the sharpness measure without the prior changing.

In each case, the sharpness measure rapidly decays after the spike, suggesting that

parameter-rescaling brings the system into a parameter region that is “unnatural”.
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3.6 Discussion and future work

The notion that flatness correlates with generalization is widely believed in the

community, but the evidential basis for this hypothesis has always been mixed. Here

we performed extensive empirical work showing that flatness can indeed correlate

with generalization. However, this correlation is not always tight, and can be easily

broken by changing the optimizer, or by parameter-rescaling. By contrast, the P (f)

which is directly proportional to the Bayesian posterior PB(f |S) for functions that

give zero error on the training set, is a much more robust predictor of generalization.

While the generalization performance of a DNN can be successfully predicted by

the marginal likelihood PAC-Bayes bound [Valle-Pérez et al., 2018, Valle-Pérez and

Louis, 2020], no such tight bound exists (to our knowledge) linking generalization

and the Bayesian prior or posterior at the level of individual functions. Further

theoretical work in this direction is needed.Moreover, it is natural to further extend

current work towards linking flatness and the prior to other quantities which

correlate with generalization such as frequency [Rahaman et al., 2018, Xu et al.,

2019], or the sensitivity to changes in the inputs [Arpit et al., 2017, Novak et al.,

2018a]. Improvements to the GP approximations we use are an important technical

goal. P (f) can be expensive to calculate, so finding reliable local approximations

related to flatness may still be a worthy endeavour. Finally, our main result – that

logP (f) correlates so well with generalization – still requires a proper theoretical

underpinning, notwithstanding the bound in Eq.(4). Such explanations will need

to include not just the networks and the algorithms, but also the data [Zdeborová,

2020]. We refer readers to Section B.1 for more discusion on related works.
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3.7 Comparing flatness metrics

Figure 3.6: The direct correlation between sharpness and spectral norm of Hessian for
the 1000 most frequently found functions found after SGD runs for a two hidden layer
FCN, in the n = 7 Boolean system (Same system as in Fig. 3.2) .

As mentioned in Section 3.2.2 of the main text, the sharpness metric in

Definition 5 can be directly linked to spectral norm of the Hessian by considering

the second order Taylor expansion of L(w) around a critical point in powers of

ζ [Dinh et al., 2017a]. We empirically confirm this relationship by showing in

Fig. 3.6 the direct correlation between sharpness and spectral norm of Hessian,

as well as in Fig. 3.7 the correlation between Hessian spectral norm and prior in

Boolean system described in Section 3.5.1.

In addition to the spectral norm, another widely used flatness measure is the

product of a subset of the positive Hessian eigenvalues, typically say the product of

the top-50 largest eigenvalues [Wu et al., 2017, Zhang et al., 2018]. We measured

the correlation of these Hessian-based flatness metrics with sharpness as well as
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Figure 3.7: The correlation between prior and flatness in Boolean system where the
flatness is measured by spectral norm of Hessian, for the 1000 most frequently occurring
functions found by SGD runs with a two hidden layer FCN. The system is the same n = 7
Boolean system as in Fig. 3.2 except that we use a different metric of flatness.

with generalization for the FCN/MNIST system in Fig. 3.8. Since they correlate

well with the sharpness, these flatness measures show very similar correlations

with generalization as sharpness does in Fig. 3.3 and Fig. 3.4. In other words, the

Hessian-based flatness metrics also capture the loose correlation with generalization

when the neural network is trained by SGD and the deterioration of this correlation

when we change the optimizer to Adam.

Another detail worth noting is that Keskar et al. [2016] used the L-BFGS-B

algorithm [Byrd et al., 1995] to perform the maximization of L(w) in Cζ , which

is the box boundary around the minimum of interest:

Cζ = {∆w ∈ Rn : −ζ (|wi|+ 1) ≤ ∆wi ≤ ζ (|wi|+ 1) ∀i ∈ {1, 2, · · · , n}} (3.5)

However, as a quasi-Newton method, L-BFGS-B is not scalable when there are tens

of millions of parameters in modern DNNs. To make Keskar-sharpness applicable

for large DNNs (e.g. ResNet50), we use vanilla SGD for the maximization instead.

The hyperparameters for the sharpness calculation are listed in Table 3.1. Note

that the entries batch size, learning rate and number of epochs all refer to the

SGD optimizer which does the maximization in the sharpness calculation process.

The number of epochs is chosen such that the max value of loss function found at
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3.8: Two Hessian-based flatness metrics show analogous behavior to sharpness
defined in (Definition 5). The architecture and dataset are FCN/MNIST, with training
set size |S| = 500, and test set size |E| = 1000; which are the same settings as Fig. 3.3 (d)
and Fig. 3.4 (e). Optimizer: SGD (a) - (b): The correlation between Hessian-based
flatness metrics and generalization. (c) - (d): Sharpness and Hessian-based flatness
metrics correlate well with one another. Optimizer: Adam (e) - (f): The correlation
between Hessian-based flatness metrics and generalization breaks down, just as it does for
sharpness in Fig. 3.4. (g) - (h): Sharpness and Hessian-based flatness metrics correlate
well with one another, even though they don’t correlate well with generalization.

Table 3.1: Hyperparameters for sharpness calculation

Data set Architecture Box size (ζ) Batch size Learning rate Number of epochs
BOOLEAN FCN 10−4 16 10−3 10
MNIST FCN 10−4 32 10−3 100
CIFAR10 FCN 10−5 128 5× 10−5 100
CIFAR10 ResNet50 10−5 128 100 100

each maximization step converges. An example of the convergence of sharpness

is shown in Fig. 3.9. As a check, we also compared our SGD-sharpness with the

original L-BFGS-B-sharpness, finding similar results.

3.8 Flatness and prior correlation

In the main text, we showed the correlation of the Bayesian prior and of sharpness

with generalization in Fig. 3.3 and Fig. 3.4. Here, in Fig. 3.10, we show the direct

correlation of the prior and sharpness. As expected from the figures in the main text,
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Figure 3.9: The max value of loss function L(w) at each iteration in the process of
maximization, when calculating the sharpness using SGD instead of L-BFGS-B. The plot
shows the max loss value found by SGD in the box limit Cζ will converge after given
number of epochs. For this plot the hyperparameters are listed in the second line of
Table 3.1 (MNIST).

sharpness correlates with prior roughly as it does with generalization - i.e. reasonably

for vanilla SGD but badly for entropy-SGD [Chaudhari et al., 2019] or Adam [Kingma

and Ba, 2014]. We note that, as shown in Fig. 3.8, sharpness also correlates relatively

well with the spectral norm of the Hessian and log product of its 50 largest eigenvalues

for all the optimizers. So the correlation of flatness with prior/generalization does

not depend much on which particular flatness measure is used.

Overall, it is perhaps unsurprising that a local measure such as flatness varies in

how well it approximates the global prior. What is unexpected (at least to us) is that

Adam and Entropy-SGD break the correlation for this data set. In Section 3.11.2,

we show that this correlation also breaks down for other more complex optimizers,

but, interestingly, not for full-batch SGD. Further empirical and theoretical work is

needed to understand this phenomenon. For example, is the optimizer dependence

of the correlation between flatness and prior a general property of the optimizer, or

is it specific to certain architectures and datasets? One hint that these results may

have complex dependencies on architecture and dataset comes from our observation

that for ResNet50 on Cifar10, we see less difference between SGD and Adam than

we see for the FCN on MNIST. More work is needed here.
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(a) (b) (c)

(d) (e) (f)

Figure 3.10: The direct correlation between prior P (f) and sharpness over different
datasets and optimizers. The correlation between prior and sharpness closely resembles the
correlation between sharpness and generalization, mainly because prior and generalization
are very closely correlated, as seen in our experiments (Fig. 3.3, Fig. 3.4).

3.9 Temporal behavior of sharpness

When using sharpness in Definition 5 as the metric of flatness, there are several

caveats. First is the hyperparameters (see Table 3.1): the value of sharpness is

only meaningful under specified hyperparameters, and in different experiments the

sharpnesses are only comparable when the hyperparameters are the same. This

renders sharpness less convenient to use (but still much more efficient than Hessian

calculation). Second is the time evolving behavior of sharpness: For the classification

problems we study, and for cross-entropy loss, it can continue to change even when

the function (and hence generalization) is unchanged.

Before reaching zero training error, gradients can be large, and the behavior of

sharpness (Definition 5) can be unstable under changes of box size ζ. This effect is

likely the cause of some unusual fluctuations in the sharpness that can be observed

in Fig. 3.5 and Fig. B.2 around epoch 100. In Fig. 3.11 we show that this artefact

disappears for larger ζ. Similarly, when the gradients are big (typical in training),
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sharpness may no longer link to spectral norm of Hessian very well.

(a) (b) (c)

Figure 3.11: Different temporal behavior of sharpness, prior and accuracy when using
different box size ζ. The dataset is MNIST with |S| = 500 and |E| = 100. The architecture
is FCN. SGD optimizer is used. Scaling parameter α = 5.0. Green and red dashed line
denote reaching zero training error and alpha scaling, respectively. (a) ζ = 10−3, (b)
ζ = 10−4, (c) ζ = 10−5. While there are quantitative differences between the values of ζ
used, qualitatively we observe similar behaviour.

In Fig. 3.12, we first train the FCN to zero error, then “alpha scale” after

500 epochs, and then keep post-training for another 5000 epochs, much longer

than in Fig. 3.5. The behaviour of sharpness and prior upon “alpha scaling” (not

surprisingly) follows our discussion in Section 3.5.4. What is interesting to see

here is that after enough overtraining, the effect of the alpha scaling spike appears

to disappear, and the overall curve looks like a continuation of the curve prior

to alpha scaling. What this suggests is that alpha-scaling brings the system to

an area of parameter space that is somehow “unnatural”. Again, this is a topic

that deserves further investigation in the future.

Finally, we show the temporal behavior of a Hessian-based flatness measure in

Fig. 3.13. Because of the large memory cost when calculating the Hessian, we use a

smaller FCN on MNIST, with the first hidden layer having 10 units. We find that

the Hessian based flatness exhibit similar temporal behavior to sharpness.

3.10 The correlation between generalization, prior,
and sharpness upon overtraining

As shown in Fig. 3.5 of the main text, and further discussed in Section 3.9,

flatness measures keep decreasing upon overtraining even when the function itself
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Figure 3.12: The temporal behavior of sharpness and prior after 5000 epochs of reaching
zero training error. The dataset is MNIST with |S| = 500 and |E| = 100. The architecture
is FCN. SGD optimizer is used. The magnitude of scaling α = 6.0.

Figure 3.13: The temporal behavior of one Hessian based flatness metric. The dataset
is MNIST with |S| = 500 and |E| = 100. The architecture is a smaller FCN (784-10-40-1),
the optimizer is SGD. The green dashed line denotes the epoch where the system reaches
zero training error. No alpha scaling is applied here. The Hessian based flatness metric
shows similar temporal behaviour to the sharpness measure.

does not change. In this section, we revisit the correlation between prior, flatness

and generalization at different numbers of overtraining epochs, i.e. after reaching

zero training error.As can be seen in Fig. 3.14 to Fig. 3.19, overtraining does not

meaningfully affect the correlation between sharpness, prior, and generalization

we observed at the epoch where zero error is first reached in Fig. 3.3 and Fig. 3.4.

When the optimizer is SGD, the flatness, no matter if it is measured by sharpness or

Hessian based metrics, correlates well with prior and (hence) generalization across

difference overtraining epochs; whereas when using Adam, the poor correlation
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also persist in overtraining.

3.11 Further experiments

3.11.1 ResNet50 trained with Adam

When training ResNet50 on CIFAR-10, we use training set size |S| = 5000, attack

set size |A| = 5000, test set size |E| = 2000. In each experiment, we mix the

whole training set with different size of subset of attack set. The size of |A| ranges

as (0, 500, 1000, 1500, ..., 5000). For each subset of attack set we sample 5 times.

When training ResNet50 with Adam, we empirically found it is hard to train the

neural net to zero training error with attack set size |A| > 2500. So we only

show the results for those functions found with |A| ≤ 2500. In Fig. 3.20 we show

the results of correlation between sharpness and prior with generalization with

limited data. The prior, as usual, correlates tightly with generalization, while the

flatness-generalization correlation is much more scattered, although it is slightly

better than the correlation seen for the FCN on MNIST, and closer to the behaviour

we observed for SGD in the main text.

3.11.2 More SGD-variant optimizers

In Fig. 3.21 we provide further empirical results for the impact of choice of

optimizer on the sharpness-generalization correlation by studying three common

used SGD variants: Adagrad [Duchi et al., 2011], Momentum [Rumelhart et al.,

1986] (momentum=0.9) and RMSProp [Tieleman and Hinton, 2012], as well as

full batch gradient descent. Interestingly, full batch gradient descent (or simply

gradient descent) shows behaviour that is quite similar to vanilla SGD. By contrast,

for the other three optimizers, the correlation between sharpness and generalization

breaks down, whereas the correlation between prior and generalization remains

intact, much as was observed in the main text for Adam and Entropy-SGD.
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Figure 3.14: The correlation between sharpness, prior and generalization upon
overtraining. The dataset is MNIST (|S| = 500, |E| = 1000), the optimizer is SGD.
For the range of (100-500) overtraining epoch tested here, the overall values of sharpness
drop with overtraining. By contrast, the priors remain largely the same. For each quantity,
the correlations remain remarkably similar with overtraining.
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Figure 3.15: The correlation between sharpness, prior and generalization when over-
trained (keep training after reaching zero training error). The dataset is MNIST (|S| =
500, |E| = 1000), the optimizer is Adam. The correlations are similar across different
overtraining epochs.
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Figure 3.16: The correlation between Hessian spectral norm, prior and generalization
when over-trained (keep training after reaching zero training error). The dataset is MNIST
(|S| = 500, |E| = 1000), the optimizer is SGD. The correlations are similar across different
overtraining epochs.
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Figure 3.17: The correlation between Hessian based flatness (product of the top 50
largest Hessian eigenvalues), prior and generalization when over-trained (keep training
after reaching zero training error). The dataset is MNIST (|S| = 500, |E| = 1000), the
optimizer is SGD. The correlations are similar across different overtraining epochs.
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Figure 3.18: The correlation between Hessian spectral norm, prior and generalization
when over-trained (keep training after reaching zero training error). The dataset is
MNIST (|S| = 500, |E| = 1000), the optimizer is Adam. The correlations are similar
across different overtraining epochs.
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Figure 3.19: The correlation between Hessian based flatness (product of the top 50
largest Hessian eigenvalues), prior and generalization when over-trained (keep training
after reaching zero training error). The dataset is MNIST (|S| = 500, |E| = 1000), the
optimizer is Adam. The correlations are similar across different overtraining epochs.
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(a) (b)

Figure 3.20: The correlation between generalization and (a) sharpness (b) prior for
ResNet50 with |S| = 5000, |E| = 2000, and |A| ranging from 0 to 2500, all on CIFAR-10.

3.11.3 Larger training set

In order to rule out any potential training size effect on our main argument of the

flatness, prior and generalization relationship, we further performed the experiments

on MNIST with 10k training examples. Larger training sets are hard because

of the GP-EP calculation of the prior scales badly with size. The results are

shown in Fig. 3.22. It is clear that the correlations between sharpness, prior and

generalization follow the same pattern as we see in Fig. 3.3, in which there are only

|S| = 500, |E| = 1000 images. If anything, the correlation with prior is tighter.
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Figure 3.21: More results on the correlation between sharpness, prior and generalization
when using other SGD-variant optimizers. The dataset is MNIST, |S| = 500, |E| =
1000. The architecture is FCN. The optimizers are full-batch gradient descent, Adagrad,
Momentum (momentum=0.9) and RMSProp. All correlations are measured upon reaching
zero training error.
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(a) (b) (c)

(d) (e) (f)

Figure 3.22: The correlation between sharpness, prior and generalization on MNIST with
|S| = 10000, |E| = 1000. The attack set size ranges from 1000 to 9000. The architecture
is FCN. (a)-(c): The FCN is trained with SGD; (d)-(f): The FCN is trained with Adam.



4
Position: Many Generalization measures

for deep learning are fragile

Overview

Generalization measures have been widely applied to deep neural networks (DNNs).

Although obtaining tight bounds remains difficult, these measures are often thought

to at least reproduce qualitative trends. In this work, we show that most existing

post-mortem generalization measures—those computed on trained networks—fail

even this basic criterion. Specifically, small hyperparameter changes, such as

minor learning rate adjustments or switching from SGD with momentum to Adam,

can reverse qualitative trends (e.g., the slope of a learning curve) in widely used

measures such as the path norm, even when the underlying DNN remains stable.

We call such measures fragile: they exhibit qualitatively different behaviour across

settings where the DNNs themselves are robust. We also identify subtler forms of

fragility. For instance, while the PAC-Bayes origin measure is regarded as one of

the most reliable, we show that it fails to capture differences in data complexity

or scaling-laws with sample size for learning curves. In contrast, the function-

based marginal-likelihood PAC-Bayes bound, which is by construction robust to

hyperparameter changes, does capture differences in data-complexity and scaling

behaviour in learning curves. Fragility may provide insights as well. We show this in
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parameter-based post-mortem bounds by exploiting scale-invariance. Nevertheless,

the general sources of these fragility failures need further investigation. In this

light, we also suggest that function-based approaches may offer a more robust

foundation for generalization measures. This position paper argues that many

current generalization bounds are fragile, and developers of new measures should

explicitly audit how they behave under hyperparameter and data variations.

4.1 Chapter introduction

Classical generalization theories—based on VC dimension, Rademacher complexity

and related tools—have a long history in machine learning. They were developed

with two intertwined aims: to furnish tight mathematical guarantees and to explain

generalization. For deep networks the same aspiration has driven a profusion of

bounds. While tight bounds have proven elusive, with some exceptions [Dziugaite

and Roy, 2018, Pérez-Ortiz et al., 2020, Lotfi et al., 2022b], there has been

an expectation that these measures can generate qualitative insight into the

generalization behaviour of deep neural networks (DNNs). These bounds have

typically focused on weights after training, which is why they are sometimes

called post-mortem bounds. With these questions in mind, some large-scale

comparisons have compared the behaviour of these measures, albeit often only

at the sign level, e.g. does changing a setting produce the same a change in the

underlying DNN and a generalization measure with the same sign [Jiang et al.,

2019a, Dziugaite et al., 2020a].

A notable property of DNNs is that their generalization performance tends

to be robust to modest changes in network size, hyperparameters, optimisers, or

stopping criteria. While careful tuning can yield small performance gains, the

overall effects are usually limited. This raises a natural question: are generalization

measures themselves equally robust to such changes? If a generalization measure

captures basic underlying factors that drive DNN performance, one would expect

it to exhibit a similar degree of robustness.
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The main finding of this paper is that many of the post-mortem bounds studied

in the literature are fragile: small, ostensibly irrelevant training tweaks that barely

affect the underlying DNN, can flip a measure’s shape, trend, or scale. To test

these fragilities systematically, we evaluate measures under controlled perturbations

that hold data, architecture, and code fixed while nudging a single knob. Three

stressors structure the audit in the main text: learning-curve behavior as sample

size increases (§4.3); temporal behavior once the model has interpolated (§4.4);

and responses to data complexity via label noise and dataset swaps (§4.5). In

the supplementary materials we show many more tests of fragility. This pattern

suggests that many measures miss something essential and should always be

audited by the kinds of tests that we suggest in this paper. If only a limited

set of hyperparameters is tested, or if evaluations only check for sign errors, one

might incorrectly conclude that the measure captures essential behaviour of DNN

generalization better than it actually does.

In contrast to the post-mortem bounds, we show that a function-based marginal-

likelihood PAC-Bayes bound successfully tracks dataset complexity and learning-

curve scaling [Valle-Pérez and Louis, 2020]. Because this pre-mortem bound operates

in function space and does not depend explicitly on the network’s weights or on

training dynamics, it is inherently insensitive to the choice of optimiser or most

hyperparameters. This insensitivity is both a strength, making the bound robust

rather than fragile, and a limitation, as it prevents the bound from reflecting how

training procedures influence generalization. Nonetheless, the strong performance of

this relatively simple approach suggests that developing more sophisticated function-

space generalization measures could be a fruitful direction for future research.

Finally, we ask whether we can learn something by investigating these fragility

based failures further. We show that some of the qualitative failures of norm-

based bounds appear to track a recent prediction for the norms in linear regression

problems Zhang and Louis [2025]. We also exploit a symmetry in scale-invariant

networks and prove a non-asymptotic equivalence between fixed learning-rate with

fixed weight decay and a matched run with exponentially increasing learning rate
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and time-varying weight decay; the two training procedures compute the same

predictor at every iterate (§4.6; cf. Li and Arora, 2019). Under this invariance

lever, magnitude-sensitive post-mortem measures can inflate by orders of magnitude

while test error remains flat. This suggests that generalization measures should

carefully track key invariances present in the underlying DNNs.

Our contribution:

• We formulate a compact fragility audit for generalization measures that targets

training-hyperparameter stability, post-interpolation temporal behavior, and

data-complexity response.

• We provide systematic evidence that popular post-mortem measures—path,

spectral and Frobenius norms, flatness proxies, and deterministic PAC–Bayes

surrogates—change their qualitative story under mild optimizer or step-size

tweaks even when the underlying DNN accuracy is stable.

• We prove an equivalence for scale-invariant networks that matches fixed schedules

to exponentially increasing learning-rate schedules with time-varying weight

decay, yielding a controlled invariance lever that isolates function from parameter

scale and exposes magnitude sensitivity.

• We offer a positive baseline: a function-space marginal-likelihood PAC–Bayes

predictor at the GP limit that passes the same stress tests, and we distill

guidelines for reporting and designing more robust diagnostics.

4.2 Related work

In this chapter we use generalization bound and generalization measure interchange-

ably: both seek to predict out-of-sample performance, differing mainly in whether

they arrive with formal guarantees. In modern deep networks these quantities are

best read as measures—diagnostics to compare across training/data regimes—rather

than practically tight certificates.
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From classical capacity to modern practice. Early theory framed capacity

via VC and Rademacher analyses [Mendelson, 2002, Anthony and Bartlett, 2002,

Bartlett and Mendelson, 2001, Koltchinskii, 2001]. As overparameterization became

the norm, evidence accumulated that uniform-convergence explanations often miss

the mark: networks can fit random labels yet generalize on natural data [Zhang

et al., 2016b], some bounds fail to track risk [Nagarajan and Kolter, 2019], and

benign overfitting can arise even at interpolation [Bartlett et al., 2020]. The field

responded with diagnostics that foreground invariances, algorithmic dependence,

and data interactions.

4.2.1 Capacity-oriented diagnostics: norms, margins, dis-
tance from initialization

The first work in this subfield translated classical notions into deep settings.

Spectrally-normalized margin bounds tied test error to Lipschitz-like control and

margins, making scale explicit [Bartlett et al., 2017b]. Path- and norm-based

views clarified how depth and weight scales shape effective complexity [Neyshabur

et al., 2015c, 2019b]. Empirically, modeling the distribution of margins—not just

the minimum—improves predictiveness across trained families [Jiang et al., 2018,

Novak et al., 2018a], and sample complexity can depend on norms rather than

width [Golowich et al., 2018b]. In practice, enforcing Lipschitz continuity often

improves out-of-sample performance [Gouk et al., 2020, Yoshida and Miyato, 2017].

Distance-from-initialization and movement-from-pretraining offer reference-aware,

width-robust complexity surrogates with both empirical support and bounds [Li

et al., 2018b, Zhou et al., 2021, Neyshabur et al., 2017b], while optimization dynamics

link large margins to implicit bias in separable regimes [Soudry et al., 2018b].

4.2.2 Geometry-oriented diagnostics: flatness and sharp-
ness

A parallel line approached generalization through loss-landscape geometry. The

“flat minima generalize better” intuition predates deep learning [Hochreiter and

Schmidhuber, 1997b] and resurfaced when large-batch training was observed to
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converge to sharper minima with worse test error [Keskar et al., 2017]. Because

raw sharpness is parameterization-dependent, normalized and magnitude-aware

definitions were proposed and shown to correlate more robustly with test error [Dinh

et al., 2017b, Tsuzuku et al., 2020, Kim et al., 2022, Jang et al., 2022]. These ideas

also shaped algorithms: SAM explicitly optimizes a local worst-case neighborhood

and typically improves accuracy; adaptive variants and ablations probe when and

why it helps [Foret et al., 2020b, Kwon et al., 2021, Andriushchenko and Flammarion,

2022]. Independent probes—weight averaging, landscape visualizations, and training-

dynamics analyses—add evidence that broader valleys often accompany better

generalization [Izmailov et al., 2018b, Li et al., 2017, Cohen et al., 2021]. Stochastic

optimization theory offers a mechanism: noise scale and heavy-tailed gradient noise

can bias learning toward flatter regions [Smith et al., 2017b, Jastrzebski et al.,

2017b, Simsekli et al., 2019, McCandlish et al., 2018].

4.2.3 Algorithm-aware certificates: PAC-Bayes as opera-
tional measures

Partly in response to limits of uniform convergence, PAC-Bayesian analysis made

algorithm dependence explicit by trading empirical risk against a posterior–prior

divergence [McAllester, 1999, Seeger, 2002, Catoni, 2007, Langford and Shawe-

Taylor, 2002]. The framework became operational when non-vacuous deep-network

certificates were obtained by optimizing stochastic posteriors [Dziugaite and Roy,

2017b], or simply working with the GP prior [Valle-Pérez et al., 2018, Zhang et al.,

2021b]. Subsequent work tightened certificates with data-aware priors [Dziugaite

and Roy, 2018, Pérez-Ortiz et al., 2020], and with compression-flavored posteriors

that reduce effective description length [Arora et al., 2018b, Lotfi et al., 2022b].

Treating PAC-Bayes itself as a training objective yields models that are both

accurate and tightly certified, while extensions broaden the scope to adversarial

risk and fast/mixed-rate regimes [Rodríguez-Gálvez et al., 2024].
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Other perspectives. Complementary lenses provide boundary conditions any

credible measure should respect. Algorithmic stability ties generalization to

insensitivity under data perturbations [Bousquet and Elisseeff, 2002, Hardt et al.,

2016]; information-theoretic analyses bound excess risk by the information a learning

rule extracts from the sample [Russo and Zou, 2016, Xu and Raginsky, 2017].

Description-length and compression viewpoints link compressibility to generalization

[Blier and Ollivier, 2018, Taiji Suzuki, 2020]. Linearized regimes (NTK/GP)

delineate when very wide nets behave like their kernel limits [Jacot et al., 2018, Lee

et al., 2020b]. Finally, double-descent phenomena and scaling laws offer external

checks on diagnostics [Belkin et al., 2019, Kaplan et al., 2020].

Meta-evaluations and synthesis. Large-scale comparisons underscore that no

single candidate explains generalization under all interventions [Jiang et al., 2019b,

Dziugaite et al., 2020b], motivating a measures-as-diagnostics mindset. A recent

critique shifts the lens from predictiveness to tightness, showing that uniformly tight

bounds are out of reach in overparameterized settings and clarifying what such

tightness could mean [Gastpar et al., 2023]. Our focus is complementary: rather

than tightness per se, we study fragility—how otherwise informative measures

can fail under innocuous hyperparameter changes that leave underlying DNN

performance essentially unchanged.

4.3 Training-hyperparameter fragility

The path norm (definition in App. 4.10) is often regarded as the strongest norm-based

proxy for modern ReLU networks: it respects layerwise rescalings, composes cleanly

with depth, and has supported some of the sharpest norm-style capacity statements

and practical diagnostics [Neyshabur et al., 2015c, 2017c, Gonon et al., 2023].

Precisely because it is a strong candidate, it is a natural place to look for fragility.

We keep the data, model, and pipeline fixed and vary only innocuous training

choices. In Fig. 4.1 we show a triptych for the same ResNet-50 on FashionMNIST,

nudging exactly one hyperparameter at a time—either the optimizer or the learning
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Figure 4.1: Path-norm learning curves under small training-pipeline nudges
(no early stopping). Left: SGD with momentum, LR = 0.01. Middle: Adam, LR
= 0.01. Right: Adam, LR = 0.001. Curves show test error (black), path norm (blue),
and path norm over margin (orange); axes are logarithmic and error bars denote seed
variability. Training set sizes n range from 102 to the full FashionMNIST training set
(5× 104 samples).

rate (no early stopping). Each curve shows test error (black), the raw path norm

(blue), and the path norm divided by the empirical margin (orange); axes are

logarithmic and error bars reflect seed variability.

Across the three panels we are looking at the same network/dataset, while

nudging just one hyperparameter and watching the path-norm metrics (blue/orange)

alongside test error (black). In the left plot, we run SGD with momentum at

LR = 0.01: both path-norm curves start enormous (∼ 105) and slide down roughly

log-linearly as we add data, with the margin-normalized curve tracking about a

decade below; test error steadily drops without surprises. Slide the optimizer to

Adam but keep LR = 0.01 (middle panel) and the picture flips qualitatively—path

norms now live near 10−1, fall smoothly at small n, then rebound once we hit

∼ 2× 104 examples, while test error keeps its gentle downward drift. Change just

one more innocuous knob—reduce Adam’s learning rate to 0.001 (right panel)—and

the metrics jump back up to ∼ 105–106 yet collapse by four orders of magnitude as

data grow; the margin-scaled path norm closely shadows the raw path norm, and

the test error retraces the familiar slow decline. These starkly different trajectories

arise purely from modest hyperparameter tweaks.

This contrast mirrors a simple analytic case in linear regression: fixing which

norm you measure does not fix its learning-curve scaling, because the solution
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selected by optimization—through implicit (or explicit) bias, e.g., favoring differ-

ent ℓp-minimizers—can induce different sample-size scalings of that same norm

[Zhang and Louis, 2025]. Our reading is that optimizer and learning-rate choices

analogously shift the deep model’s implicit bias, toggling the path-norm scaling

between monotone and U-shaped. Changing only the stopping criterion did not

yield a significant qualitative difference in these experiments, so we focus on the

learning-rate and optimizer perturbations. See App. 4.10 for precise definitions

and further experiments, including the same stress test across Frobenius, margin,

spectral, PAC-Bayes, and VC-style proxies.

4.4 Temporal behavior fragility

Temporal traces ask a simple question that post-mortem snapshots cannot: once

the classifier stops changing, does the measure stop moving? Let Tint denote

the first epoch at which training accuracy reaches 100%. A stable diagnostic

should largely settle for t > Tint; continued motion there indicates optimizer-driven

drift rather than functional change. We examine this regime on a logarithmic

epoch axis for readability.

A paired experiment on FashionMNIST makes the point. We fix the architecture

(ResNet-50), learning rate (0.01), data, and stopping rule, and change only the

optimizer. With Adam (left panel of Figure 4.2), a representative weight-norm

measure—the path norm—climbs from ≈ 1 to > 102, and the ratio-over-margin

rises in step. Interpolation occurs late (Tint≈114), yet both traces keep increasing

beyond that point. With SGD with momentum (right), interpolation arrives much

earlier (Tint≈27); the path norm sits near 3× 102 and then slowly declines, and the

ratio-over-margin trends downward. In both runs, the generalization curve remains

on a comparable scale. The optimizer swap thus toggles the post-interpolation

regime from monotone growth to stabilization/decay without a commensurate

change in test error.

A plausible mechanism underlies this split. After interpolation under cross-entropy,

gradients can continue to increase logit scale along near-flat directions. Adam tends
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Figure 4.2: ResNet-50 on FashionMNIST at learning rate 0.01 with identical stopping;
epoch axis is logarithmic. Left (Adam): path norm grows from ≈ 1 to > 102 and
continues past the 100% train-accuracy point (≈ 114 epochs); the ratio-over-margin rises
accordingly. Right (SGD+momentum): path norm stays near 3× 102 then declines after
an earlier 100% crossing (≈ 27 epochs); the ratio trends downward; generalization is
similar in both.

to amplify this scale drift, while SGD+momentum tempers it, yielding opposite

signs for the post-interpolation slope. The lesson is that weight–norm–based mea-

sures—and margin-normalized variants that co-move with them—are not monotone

indicators of optimization progress: an upward trend can be optimizer-driven scale

inflation; a flat or gently declining trend need not signal stagnation.

For practice, report Tint and the post-interpolation slope s := d log Measure
d log t

∣∣∣
t>Tint

alongside any temporal plot; overlay optimizers on the same axes; and compare

snapshots at matched milestones (e.g., the first 100%-accuracy crossing) or with

early-stopped checkpoints. A useful stress test is hysteresis: resume a checkpoint

taken just after Tint with a different optimizer and check whether the measure’s drift

changes sign while test error holds steady. These checks make temporal fragility

visible and keep optimizer-induced motion from being mistaken for learning.

4.5 Data-Complexity Fragility: Label Noise &
Dataset Difficulty

What should a good “generalization measure” do as the data become harder? As we

randomize a fraction of labels, the task grows noisier; as we move from MNIST

to FashionMNIST to CIFAR10, the natural difficulty increases. A faithful

measure ought to move in a predictable way (typically one–directional, with broadly

similar shape and scale across reasonable training setups). Figure 4.3 juxtaposes
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two post-mortem diagnostics (path norm and path norm over margin) with a

function-space predictor (the marginal-likelihood PAC–Bayes bound). Merely

changing Adam’s learning rate flips the qualitative trend of the path-norm curves

(left vs. middle), whereas the marginal-likelihood bound (right) remains stable

in its response to label corruption. We observe a similar path-norm effect under

SGD with momentum; see Appendix C.3, Fig. C.8. This is precisely the kind of

fragility our framework urges authors to reveal when treating bounds as measures

rather than guarantees.

4.5.1 Path norms: the same setup, different stories

In Figure 4.3 (left and middle), the only change is Adam’s learning rate. At

LR=10−3 the path norm begins towering, collapses by roughly two orders of

magnitude as soon as we inject noise, and then levels off ; the margin-normalized

variant echoes this shape. At LR=10−2, both curves instead sit low and climb

gently with corruption. Same optimizer, same model, same dataset—yet the story

told by the post-mortem norms flips with a ten-fold LR change.

By contrast, the right panel plots the marginal-likelihood PAC–Bayes (ML-PACBayes)

bound (purple; definition and discussion in §4.7). Unlike post-mortem norms,

ML-PACBayes is a function-space quantity: it depends on the architecture’s prior

over functions and the data, not on the particular path taken through parameter

space. Consistent with this invariance, it increases smoothly with label corruption

and is agnostic to the LR change that derails the norm-based diagnostics. (See §4.7

for why this invariance is expected and how it extends to dataset difficulty.)

Remark. Several PAC–Bayes parameter-space surrogates are often insensitive to

label corruption in standard setups—another kind of fragility. Here we emphasize

that a function-space view (ML-PACBayes) moves correctly with data difficulty and

avoids entanglement with training hyperparameters; see §4.7 and Appendix C.3.
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Figure 4.3: Label-corruption sweeps with post-mortem norms vs.
function-space ML-PACBayes on RESNET-50. Left: Adam, LR=0.01. Middle:
Adam, LR=0.001. Right: marginal-likelihood PAC–Bayes (ML-PACBayes; purple).
Dashed black: test error; blue: path norm; orange: path norm over margin. A ten-fold
LR change reverses the path-norm trend (left vs. middle), while ML-PACBayes remains
a smooth, monotone function of corruption (right) and is, by construction, agnostic to
optimizer/LR. All panels use 10,000 training samples.

4.5.2 Fix architecture, vary dataset: a subtler PAC–Bayes
fragility

The literature often treats PACBAYES_ORIG as among the most informative PAC–Bayes

proxies. Here we hold the architecture and hyperparameters fixed and vary the

dataset—overlaying MNIST, FashionMNIST, and CIFAR10. As expected, the

dashed generalization–error curves separate cleanly and their slopes differ with

dataset difficulty (MNIST steepest decline, CIFAR-10 flattest). However, the

first two panels of Figure 4.4 show that, besides giving almost identical numerical

values for different datasets, PACBAYES_ORIG also fails to pick up the correct dataset

difficulty: its learning-curve slopes are nearly indistinguishable across datasets and

do not echo the test-error slopes. By contrast, the third panel (ML-PACBayes) is

both tight (close to the corresponding error curves) and data-aware: it preserves

the MNIST<FashionMNIST<CIFAR-10 ordering and reflects the different slopes.

See §4.7 for the bound’s definition and a fuller discussion of why this function-space

quantity captures dataset difficulty while parameter-space surrogates often do not.

Beyond label corruption and dataset swaps, we also probe symmetry-preserving

vs. signal-destroying data transforms via pixel permutations; the function-space

predictor tracks the expected invariances while several post-mortem diagnostics

do not (App. C.4).
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Figure 4.4: Fixed architecture, varying dataset.. The model is RESNET-50. Left:
PACBAYES_ORIG with Adam. Middle: PACBAYES_ORIG with SGD (momentum). In both,
the PACBAYES_ORIG curves take almost identical values across MNIST, FashionMNIST,
and CIFAR10 and show nearly the same slope, missing the data-complexity ordering
visible in test-error slopes. Right: ML-PACBayes (marginal-likelihood PAC–Bayes) is
tight and preserves the correct dataset ordering and slope; this panel is computed on the
binarized versions of the three datasets.

4.6 Scale-invariant network and exponential learn-
ing rate schedule

Normalization layers make many modern networks effectively scale-invariant, and

this symmetry underlies the “exponentially increasing learning-rate” idea of Li

and Arora [2019]: in such models, training with fixed learning rate (LR), weight

decay (WD), and momentum can be matched—in function space—by a run with an

exponentially increasing LR and no WD (plus a small momentum correction across

phases). Their analysis shows how LR and WD can be “folded into” an exponential

schedule and documents successful experiments under this equivalence. We refer

to this multiplicative control parameter α as the Exp++ factor.

We use the same symmetry but a different equivalence. Instead of removing

WD, our theorem pairs an exponentially increasing LR with a time-varying WD so

that every iterate computes the same predictor as a fixed-LR/fixed-WD baseline.

The mapping is explicit and non-asymptotic: it gives closed-form schedules for η̃t

and λ̃t, and an admissible range for the multiplicative factor α via the interval I.

Conceptually, this creates a single “Exp++” knob that can drive large changes in

parameter norms while leaving the learned function essentially unchanged—exactly



4. Position: Many Generalization measures for deep learning are fragile 75

the benign intervention we later use to probe the fragility of magnitude-sensitive

measures. Empirical details and results are deferred to Appendix 4.11.

Definition 8 (Scale invariant neural networks). Consider a parameterized neural

network f(θ). We say f is scale invariant if

∀c ∈ R+, f(θ) = f(cθ) (4.1)

Theorem 10 (Equivalence of schedules in scale-invariant nets). (GD+WD+LR

fixed ⇔ GD+WD↘ + LR↗). Let f(θt) be scale-invariant and let training use

SGD with momentum γ. Introduce the shorthands

∆λ := (1− γ)2 − 2(1 + γ)λη0 + (λη0)2, (4.2)

Ξ(α) := α2 − α(1− λη0 + γ) + γ

η0
. (4.3)

Define the interval endpoints

αL := γ

1− λη0 + γ
, (4.4)

α− := 1 + γ − λη0 −
√

∆λ

2 , (4.5)

α+ := 1 + γ − λη0 +
√

∆λ

2 , (4.6)

and set

I := (αL, α−] ∪ [α+, 1). (4.7)

Consider the two updates (with θ−1 = θ0, θ̃0 = θ0, θ̃−1 = α θ−1):

θt − θt−1

η0
= γ(θt−1 − θt−2)

η0
−∇θ

(
L(θt−1) + λ

2∥θt−1∥2
2

)
, (A)

θ̃t − θ̃t−1

η̃t
= γ(θ̃t−1 − θ̃t−2)

η̃t−1
−∇θ

(
L(θ̃t−1) + λ̃t

2 ∥θ̃t−1∥2
2

)
. (B)

If α ∈ I, then the schedules

η̃t = η0 α
−2t−1, (4.8)

λ̃t = Ξ(α)α2t−1 + γ(1− α)
η0 α

1{t = 0} (4.9)

ensure θ̃t = α−tθt for all t ≥ 0; hence (A) and (B) generate identical functions.
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Remark (Parameter range and nonnegativity). Assume

λη0 ≤ (1−√γ)2, (4.10)

αL < α− (equivalently, ∆λ ≥ 0). (4.11)

Then the interval I above is nonempty and the square-root term is real; both

conditions hold for common hyperparameters in practice.

Consequences. The proof of Theorem 10 is in Appendix A.1. In the scale-invariant

setting, this equivalence lets us pump parameter norms without changing f(θ),

a lever we use to stress-test generalization measures. Applying this dial, we find

that even the measure that looked most stable in our earlier probes—the standard

parameter-space PAC–Bayes proxy PACBAYES_orig—fails catastrophically here: as

the Exp++ factor grows, the proxy inflates by orders of magnitude while test error

is essentially unchanged; see Appendix 4.11.

4.7 Post-mortem vs. ML-PACBayes

We contrast post-training (“post-mortem”) generalization measures with a function-

space approach based on the marginal-likelihood PAC–Bayes bound of Valle-Pérez

and Louis [2020]. The bound controls the test error of a hypothesis sampled from

a Bayesian posterior over functions (not parameters); the key capacity term is

the marginal likelihood (Bayesian evidence) of the data under the architecture’s

Gaussian-process (GP) limit. All figure numbers below refer to Valle-Pérez

and Louis [2020].

Definition 9 (Marginal-likelihood PAC–Bayes bound). Consider binary classifica-

tion with data distribution D over X × {0, 1} and a hypothesis space H of functions

h : X → {0, 1}. Let S ∼ Dn be a training set of size n ≥ 2, and let P be a prior on

H. Define the consistency set

C(S) := {h ∈ H : ε̂(h, S) = 0 },
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where ε̂(h, S) = 1
n

∑
(x,y)∈S 1{h(x) ̸= y} is the empirical 0–1 error. The (realizable)

Bayesian posterior supported on C(S) is

Q(h) =


P (h)

P (C(S)) , h ∈ C(S),

0, otherwise,

where P (C(S)) = ∑
h∈C(S) P (h) is the marginal likelihood (Bayesian evidence) of

S.

For any confidence levels δ, γ ∈ (0, 1], with probability at least 1− δ over S ∼ Dn

and, conditional on S, with probability at least 1− γ over h ∼ Q, the generalization

error ε(h) = Pr(x,y)∼D[h(x) ̸= y] satisfies

− ln
(
1− ε(h)

)
<

ln 1
P (C(S)) + lnn+ ln1

δ
+ ln 1

γ

n− 1 . (4.12)

Remark (binary vs. multiclass). We state the bound for binary classification for

clarity; the function-space marginal-likelihood perspective extends to multiclass via

standard reductions (e.g., one-vs-rest) or multiclass likelihoods.

What our fragility checks reveal—and what the ML-PACBayes bound

gets right. We evaluated each measure against consequential perturbations:

dataset difficulty, data-size scaling, training-pipeline changes, and temporal behavior

(overtraining). Post-mortem measures (sharpness/flatness, norm/margin proxies,

compression-style, and deterministic PAC–Bayes surrogates) often fail at least one

stressor; in our runs, even strong performers such as PACBAYES_orig failed key tests.

By contrast, the GP-based bound tracks the function-level regularities we care about:

• Data complexity. The marginal-likelihood bound tracks dataset difficulty: it

increases with label corruption and preserves the canonical ordering MNIST <

Fashion-MNIST < CIFAR-10; see Figure 1 in [Valle-Pérez and Louis, 2020]. In

our audits, several post-mortem measures—including PACBAYES_orig—either

flattened under corruption or were not able to catch the ordering, even when

the test error did.



4. Position: Many Generalization measures for deep learning are fragile 78

• Learning-curve scaling. The marginal-likelihood bound tracks learning-curve

scaling: it mirrors the empirical power-law in n and clusters exponents

primarily by dataset; see Figures 2–5 in [Valle-Pérez and Louis, 2020]. By

contrast, some post-mortem measures barely moved with n; others bent the

wrong way or mixed optimizer effects with data effects (cf. [Nagarajan and

Kolter, 2019]).

• Temporal behavior (overtraining invariance). The marginal-likelihood

bound tracks temporal invariance: once S is fixed and training has interpolated

(ε̂ = 0), the bound depends only on P (C(S)) and n—it is agnostic to how

long or by which path the parameters were trained. In our temporal-behavior

experiments, several norm-based post-mortem measures (e.g., ℓ2/spectral/path

norms) kept growing during overtraining while the generalization error stayed

roughly unchanged; the GP bound remained stable. (This echoes broader

observations that longer training can leave test error flat or improved [Hoffer

et al., 2017], and that norms can diverge under separable losses without

hurting classification error [Soudry et al., 2018b].)

• Training-pipeline changes. Many post-mortem measures swing with opti-

mizer, batch size, explicit/implicit regularization, and early stopping—sometimes

tracking curvature artifacts rather than out-of-sample error [e.g., Keskar et al.,

2017, Hochreiter and Schmidhuber, 1997b, Jiang et al., 2019b, Dziugaite et al.,

2020b]. The GP marginal-likelihood bound is, by construction, insensitive to

these knobs: it depends on the architecture’s function prior and the data, not

on the path taken through parameter space. We view this invariance as a

virtue for a predictor; the bound is not designed to explain differences caused

by optimizer choice and should not be judged on that criterion.

These properties are consistent with our optimizer-swap and pixel-permutation

stress tests (Apps. C.2 and C.4) and with our scale-symmetry Exp++ dial, which

only alters parameter scale (App. 4.11).
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Why does the function-space route outperform post-mortems? Two

ingredients stand out. First, the bound evaluates an Occam factor in function space:

architectures that place high prior mass on data-compatible functions earn better

evidence, naturally capturing dataset ordering and learning-curve slopes. Second,

there is a credible external yardstick: infinite-width GP predictors (NNGP/NTK)

often quantitatively predict finite-width DNN generalization trends [Lee et al.,

2020a]. Together, these explain why Figures 1–5 show greater stability for the

GP-based approach than we observe for post-hoc, parameter-space measures.

So why do post-mortems underperform? The live hypothesis is that they

measure the wrong object. Post-mortem scores probe properties of a single trained

parameter vector (curvature, norms, compressibility), entangling optimization

details and reparameterization choices with generalization. That enterprise is

important—and the community has argued forcefully that such post-training

diagnostics deserve attention [e.g., compression and robustness perspectives in Arora

et al., 2018b, 2019b, Jiang et al., 2019b, Dziugaite et al., 2020b]—but our evidence

suggests their predictions are fragile under routine perturbations. By contrast, the

GP bound targets the distribution over functions implied by architecture and data.

Open question. Even if the GP-based predictor/bound wins these stress tests,

finite-width networks can outperform their GP limits; yet the GP still predicts

a striking fraction of performance trends (Figures 2–5). Closing this gap—by

designing reparameterization-invariant, data-aware post-mortem diagnostics that

inherit the Occam flavour of marginal likelihood—remains open.

4.8 Conclusion and discussion

We take a pragmatic view of generalization bounds: in modern deep learning they

function best as measures to be judged by how they behave across data and training

regimes rather than by worst-case tightness. Read this way, fragility becomes the

key property to audit. With the task fixed and accuracy essentially steady, small
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and reasonable pipeline tweaks—changing the learning rate by a factor of ten,

swapping Adam for momentum SGD, toggling early stopping—can bend surrogate

curves, invert trends, or inflate their scale. When the task truly becomes harder, via

label corruption or by moving from MNIST to FashionMNIST to CIFAR-10, several

surrogates fail to preserve the expected ordering or slope. Our scale-invariance

construction makes this failure mode explicit: one can inflate parameter magnitudes

without changing the predictor, and magnitude-sensitive post-mortems then balloon

while test error does not. This gap underscores that properties of a single parameter

vector need not reflect properties of the learned function.

The comparison between post-mortem diagnostics and the marginal-likelihood

PAC–Bayes route in function space sharpens the lesson. The GP-based predictor

respects dataset difficulty, mirrors learning-curve slopes chiefly as a property of the

data distribution, and remains largely indifferent to optimizer path once the training

set is interpolated; post-mortems, by contrast, tend to entangle reparameterization

and optimizer-driven scale with generalization. The function-space approach is not

a panacea, but it points to the right invariances for any useful measure and provides

a concrete foil against which parameter-space surrogates can be refined.

Looking forward, several concrete directions could strengthen this position:

• design reparameterization-invariant, data-aware post-training diagnostics that

borrow the Occam flavour of marginal likelihood while remaining practical at

scale;

• build a public fragility benchmark and automated audit harness covering op-

timizer/schedule swaps, scale-symmetry probes, and data-complexity sweeps;

• develop approximate function-space surrogates (finite-width corrections, amor-

tized evidence estimators, ensembles as posteriors over functions) to make

invariance-friendly predictors usable in routine training;

• tie diagnostics to training dynamics by discouraging scale-only drift after

interpolation or by incorporating function-space objectives during training;
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• extend evaluation beyond vision classification to sequence models, generative

modelling, reinforcement learning, and explicit distribution shift, testing

whether the same invariance principles hold.

4.9 Alternative Views

Reasonable researchers can disagree with our emphasis on parameter-space fragility

and our recommendation to favor function–space diagnostics. We highlight several

viable counterpositions and address them in turn:

• Optimizer sensitivity is signal, not noise. Because implicit bias drives

which predictor is learned, a useful measure should move with the training

pipeline, not be invariant to it.

• Post-mortem measures can be stabilized. With the right reparameterization-aware

definitions (e.g., normalized sharpness, margin distributions, distance from

initialization), much of the apparent fragility disappears.

• Function-space GP baselines are mis-specified for modern, finite-width

practice. GP priors, absence of data augmentation in the prior, and finite-width

effects limit how decisively marginal-likelihood predictors should be used as a

reference.

Optimizer sensitivity as a feature. A common objection is that optimizer,

schedule, and batch size are first-order determinants of generalization; therefore,

measures should reflect them. This view points to well-documented implicit-bias

phenomena—e.g., margin growth under separable losses and optimizer-dependent

convergence paths—that influence which classifier is ultimately selected [Soudry

et al., 2018b, Smith et al., 2017b, Simsekli et al., 2019]. From this perspective, the

very invariances we prize risk washing out real, practically actionable differences

between training recipes.
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Response. We agree that optimizer choice can change the learned function and

that a diagnostic should detect functionally meaningful changes. Our claim is nar-

rower: diagnostics that swing under pure scale drift or minor hyperparameter nudges

while test error and predictions remain essentially fixed can mislead day-to-day

comparisons. This is why our audit always pairs any optimizer comparison with

either (i) matched-prediction checkpoints (e.g., at the first 100%-accuracy crossing)

or (ii) a symmetry lever that alters parameter scale without changing the predictor

(§4.6). When pipeline changes do alter the predictor, a stable measure should move

in tandem with test error; when they do not, a robust measure should be indifferent.

Stabilizing post-mortem diagnostics. A second objection holds that many

post-training measures already address scale and parameterization issues. Normal-

ized or reparameterization-aware sharpness correlates more reliably with general-

ization than raw curvature [Dinh et al., 2017b, Tsuzuku et al., 2020, Kim et al.,

2022, Jang et al., 2022]; modeling the distribution of margins rather than the

minimum improves predictiveness across runs [Jiang et al., 2018]; reference-aware

surrogates such as distance from initialization or movement from pretraining reduce

width and scale artifacts and come with supporting analyses [Li et al., 2018b,

Neyshabur et al., 2017b, Zhou et al., 2021]. On this view, fragility largely reflects

naive implementations, not intrinsic flaws.

Response. We see these developments as complementary and encouraging.

Our results target precisely such “best-effort” variants (normalized, margin-aware,

reference-aware) and still uncover qualitative flips under mild pipeline changes when

predictions are stable. We do not argue that post-mortems are useless; rather, we

argue they remain fragile enough that authors should routinely report their stability

under the stressors we outline (§4.3–4.5), and prefer versions that (i) are explicitly

invariant to layerwise rescalings, (ii) condition on matched prediction milestones,

and (iii) are benchmarked against data-difficulty shifts and temporal drift after

interpolation. In short, our audit is a bar to clear, not a dismissal of the enterprise.
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Limits of function–space GP references. A third objection is that using a

GP-based marginal-likelihood PAC–Bayes predictor as a baseline (§4.7) overstates

its practical authority. Modern models are finite-width, heavily augmented, and

often trained far from the GP regime; priors that ignore augmentation, architectural

quirks, or fine-tuned tokenization may be badly mis-specified. In addition, the

bound controls the error of a stochastic Gibbs classifier drawn from a posterior over

functions, not necessarily the deterministic network one actually deploys. Therefore,

the GP route’s stability could stem from omitting factors that matter in practice

[Lee et al., 2020b, Valle-Pérez and Louis, 2020].

Response. We agree the GP prior is not a panacea and that finite-width networks

can outperform their GP limits. We use the GP marginal-likelihood bound as a

calibration tool, not an oracle: it encodes desirable invariances (insensitivity to

parameter scale and optimizer path once the dataset is fixed) and consistently tracks

data difficulty and learning-curve scaling across families. Those properties make

it a valuable foil for stress-testing post-mortems. Where the GP prior is clearly

mis-specified (e.g., heavy augmentation or domains far from image classification),

our recommendation is empirical: rerun the same fragility audit. If the GP predictor

ceases to track error while a reparameterization-invariant post-mortem does, that

is evidence for the post-mortem in that regime.

Synthesis. These counterarguments motivate a middle path. Rather than ele-

vating any single diagnostic, we advocate (i) reporting multiple invariance-aware

post-mortems, (ii) auditing them with our stressors (learning-curve shape, temporal

drift after interpolation, and data-complexity response), and (iii) anchoring inter-

pretation with at least one function–space reference when feasible. This recognizes

optimizer-dependent mechanisms while discouraging conclusions drawn from features

(e.g., raw scale) that can be changed without affecting predictions.



Supplementary Material for Chapter 4

4.10 Training-hyperparameter fragility for all mea-
sures

In this section we give concise definitions of the measures we study (aligning notation

with prior large-scale evaluations) and provide additional experimental evidence

beyond the main text [Dziugaite et al., 2020b, Jiang et al., 2019b]. We then present

figure-backed comparisons where small learning-rate or optimizer tweaks trigger

qualitatively different curve shapes for the surrogate—plateaus, rebounds, late spikes,

and crossings—while the accompanying accuracy curves remain comparatively calm.

4.10.1 Frobenius distance

Two qualitatively different shapes appear when only the learning rate or optimizer

changes, and they are visible in Fig. 4.5 and Fig. 4.6. On ResNet-50/CIFAR-10

with Adam, η=10−3 produces a broad plateau followed by a late collapse, whereas

η=10−2 decays smoothly throughout (compare left vs. right in Fig. 4.5). On

DenseNet-121/FashionMNIST at fixed η=10−2, Adam’s curve is U-shaped (drop

then rebound), while momentum SGD traces a near log-linear decline (left vs. right

in Fig. 4.6); the accuracy curves remain closely aligned in both pairs.

4.10.2 Inverse margin

Figure 4.7 (left vs. right) shows that for ResNet-50/CIFAR-10 with Adam, η=10−3

produces a smooth, power-law-like decline in inverse margin, whereas η=10−2 stalls

mid-training before resuming its drop; this kink has no analogue in the accuracy

curve. At fixed η=10−2 on FCN/FashionMNIST, Adam develops a clear bump

84
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Figure 4.5: Frobenius distance, ResNet-50 on CIFAR-10 (Adam). Left: η=10−3

shows a plateau and late collapse; right: η=10−2 decays smoothly while accuracy tracks
similarly.

Figure 4.6: Frobenius distance, DenseNet-121 on FashionMNIST (η=10−2).
Left: Adam yields a U-shape; right: SGD+mom declines nearly log-linearly; in both cases
test accuracy evolves similarly.

after roughly 103 samples while SGD’s curve decreases monotonically (Fig. 4.8);

again, both reach similar generalization.

4.10.3 Spectral metrics

Spectral surrogates display late spikes and order reversals under the same minimal

tweaks. With DenseNet-121/FashionMNIST and Adam, η=10−3 sends the

distance-from-initialization in spectral norm down and then sharply up late in

training, crossing the FRO-OVER-SPEC curve, whereas η=10−2 keeps both traces

monotone but flips their ordering (compare panels in Fig. 4.9). On ResNet-

50/FashionMNIST at η=10−2, Adam shows a valley then rise, while SGD declines

steadily (Fig. 4.10); accuracy curves overlap in both pairs.
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Figure 4.7: Inverse margin, ResNet-50 on CIFAR-10 (Adam). Left: η=10−3

decays smoothly; right: η=10−2 stalls then resumes, a kink absent from the accuracy
curve.

Figure 4.8: Inverse margin, FCN on FashionMNIST (η=10−2). Left: Adam
develops a mid-course bump; right: SGD+mom is monotone; both generalize similarly.

4.10.4 PAC-Bayes bounds

Optimizer swaps and moderate learning-rate changes also produce curved versus

straight “bound profiles” and late order crossings. For ResNet-50/FashionMNIST

at η=10−2, Adam yields kinked “banana” trajectories across variants, whereas SGD

renders near-straight lines (Fig. 4.11). Holding Adam fixed and raising η from

10−3 to 10−2 reorders the variants late in training—for example, PACBAYES

MAG and PACBAYES ORIG swap rank—even though accuracy shows no

such crossing (Fig. 4.12).

4.10.5 VC-dimension proxy (robust baseline)

As a control, Fig. 4.13 shows that the parameter-count proxy for ResNet-50/CIFAR-

10 with Adam is strikingly shape-stable across η=10−3 and η=10−2: both traces

are near-identical monotone decays, tracking one another while accuracy also aligns.

This pair serves as a rare counterexample resistant to qualitative shifts.
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Figure 4.9: Spectral metrics, DenseNet-121 on FashionMNIST (Adam). Left:
η=10−3 drops then spikes, crossing FRO-OVER-SPEC; right: η=10−2 stays monotone
but reverses ordering.

Figure 4.10: Spectral metrics, ResNet-50 on FashionMNIST (η=10−2). Left:
Adam exhibits a valley then rise; right: SGD+mom declines steadily; accuracy is similar.

Across all families above, the figures make a consistent point: changing only

the learning rate or swapping the optimizer can reshape the surrogate’s learning

curve—introducing plateaus, rebounds, late spikes, or crossings—without a commen-

surate shift in test accuracy. This shape-level fragility extends far beyond Path norms

and cautions against reading causal explanations of generalization from any single

surrogate without dedicated stress tests [Dziugaite et al., 2020b, Jiang et al., 2019b].

4.11 Exp++ in scale-invariant nets: protocol and
results

We instantiate the symmetry in a fully connected, scale-invariant network (normal-

ization after each hidden linear layer; the final linear readout is frozen), trained

on MNIST with SGD + momentum. We sweep a single control, the Exp++

multiplicative factor α from Theorem 10, which makes the learning rate grow

exponentially across steps, and repeat the sweep both without and with weight decay.
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Figure 4.11: PAC-Bayes, ResNet-50 on FashionMNIST (η=10−2). Left: Adam
produces curved, kinked trajectories; right: SGD+mom is nearly straight; test error
changes little.

Figure 4.12: PAC-Bayes, ResNet-50 on FashionMNIST (Adam). Left: η=10−3;
right: η=10−2. Increasing η induces late-training order swaps (e.g., MAG vs. ORIG)
absent from the accuracy curves.

For each run we log parameter-space PAC–Bayes proxies (including magnitude-aware

variants), path-norm proxies (with/without margin normalization), and test error.

The stopping rule is cross-entropy unless stated otherwise.

Findings. Across both regimes (no WD and with WD) the test-error trace

barely moves as α grows, yet the magnitude-sensitive diagnostics explode on a log

scale. In particular, the PAC–Bayes family and the path-norm proxies rise by many

orders of magnitude even though the error curve hugs a dashed 10% reference. This

is exactly what the equivalence predicts in a scale-invariant net: Exp++ changes

parameter scale, not the predictor—exposing the fragility of magnitude-dependent

measures (notably PACBAYES_orig) in this setting.

Reading the panels. In both Figure 4.14 (no WD) and Figure 4.15 (with WD),

left panels aggregate PAC–Bayes proxies; right panels show path-norm proxies.

Axes are logarithmic for the measures and linear for the test error (right axis);

the dashed horizontal line marks 10% test error for visual reference. Together,
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Figure 4.13: VC-dimension proxy, ResNet-50 on CIFAR-10 (Adam). Left:
η=10−3; right: η=10−2. Nearly identical monotone decays; a useful control.

Figure 4.14: Exp++ in a scale-invariant FCN (no WD; CE stopping). As the
Exp++ factor increases, PAC–Bayes proxies (left) and path-norm proxies (right) swell
by orders of magnitude, while the test-error curve (right axis; dashed 10% line) remains
essentially flat.

the panels illustrate a clean separation between parameter scale (which Exp++

manipulates) and predictive behavior (which stays essentially fixed).
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Figure 4.15: Exp++ with weight decay (CE stopping). The qualitative picture
persists with WD: magnitude-sensitive PAC–Bayes and path-norm diagnostics climb
sharply with the Exp++ factor, but the predictor’s test error barely changes.



5
Closed-form ℓr Norm Scaling with Data for
Overparameterized Linear Regression and

Diagonal Linear Networks under ℓp Bias

Overview

For overparameterized linear regression with isotropic Gaussian design and minimum-

ℓp interpolator with p ∈ (1, 2], we give a unified, high-probability characterization

for the scaling of the family of parameter norms {∥ŵp∥r}r∈[1,p] with sample size.

We solve this basic, but unresolved question through a simple dual-ray analysis,

which reveals a competition between a signal spike and a bulk of null coordinates

in X⊤Y , yielding closed-form predictions for (i) a data-dependent transition n⋆

(the “elbow”), and (ii) a universal threshold r⋆ = 2(p− 1) that separates ∥ŵp∥r’s

which plateau from those that continue to grow with an explicit exponent. This

unified solution resolves the scaling of all ℓr norms within the family r ∈ [1, p]

under ℓp-biased interpolation, and explains in one picture which norms saturate and

which increase as n grows. We then study diagonal linear networks (DLNs) trained

by gradient descent. By calibrating the initialization scale α to an effective peff(α)

via the DLN separable potential, we show empirically that DLNs inherit the same

elbow/threshold laws, providing a predictive bridge between explicit and implicit
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bias. Given that many generalization proxies depend on ∥ŵp∥r, our results suggest

that their predictive power will be highly sensitive to which ℓr norm is used.

5.1 Chapter introduction

Many modern generalization measures for machine learning tasks are anchored

on the parameter norm instead of parameter count [Neyshabur et al., 2015c,a,

Yoshida and Miyato, 2017, Miyato et al., 2018, Cisse et al., 2017]. Yet, most

analyses of overparameterized regression still treat “the norm” monolithically—

typically defaulting to ℓ2. If one is going to use a parameter norm, which ℓr

should be used, and how does that choice interact with the inductive bias that

selects the interpolator (e.g., minimum-ℓp)? This question has been comparatively

less studied. We address this question first in a simpler but core setting—linear

regression—and then connect the picture to diagonal linear networks (DLNs). Our

experiments reveal that sweeping (r, p) produces non-trivial behavior: even for the

same interpolating predictor, some ℓr norms plateau while others keep growing

with distinct slopes; in mixed cases, the elbow’s location shifts with p, and which

r’s plateau depends on the setting.

In linear regression it is well understood that the value of p shapes the inductive

bias (sparser as p↓1, denser as p↑2), making the r–p interaction concrete. Beyond

explicit ℓp penalties, first-order optimization can implicitly select a geometry: in

overparameterized linear regression, gradient methods recover the minimum-ℓ2

interpolant; in separable classification, gradient descent converges to a max-margin

solution; and in diagonal/deep linear parameterizations, the separable potentials

governing the dynamics interpolate between sparse- and dense-leaning behaviors

depending on initialization and parameterization [Tibshirani, 1996, Frank and

Friedman, 1993, Hoerl and Kennard, 1970, Chen et al., 2001, Zou and Hastie,

2005, Hastie et al., 2015, 2022a, Soudry et al., 2018a, Gunasekar et al., 2018a, Ji

and Telgarsky, 2019b, Chizat et al., 2019, Woodworth et al., 2020]. This variety

Code for this work can be found at https://github.com/sofuncheung/minlp_codebase

https://github.com/sofuncheung/minlp_codebase
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of explicit/implicit pathways for p-like biases motivates our unified treatment of

the family {∥ŵ∥r} and explains why different ℓr proxies can exhibit qualitatively

different n-dependence under a fixed training pipeline.

Concretely, we study the minimum-ℓp interpolator in high-dimensional linear

regression with isotropic Gaussian design (d > n, p ∈ (1, 2]), and we characterize—in

closed form and with high probability—how the entire family {∥ŵp∥r}r∈[1,p] scales

with n. A one-dimensional dual–ray analysis exposes a competition between a signal

spike and a high-dimensional bulk in X⊤Y , yielding: (i) a data-dependent transition

size n⋆ (an elbow in n), and (ii) a universal threshold r⋆ = 2(p− 1) that separates

norms that ultimately plateau (r > r⋆) from those that continue to grow with

explicit exponents (r ≤ r⋆). We also extend the picture to DLNs trained by gradient

descent: calibrating the initialization scale α via the network’s separable potential

that gives an effective exponent peff(α), and with this calibration the observed

ℓr–vs–n curves inherit the same elbow/threshold structure as explicit minimum-ℓp
interpolation. When the inductive bias is unknown a priori—e.g., the operative p

of the training pipeline is unclear—our results imply that choosing the “right” r for

norm-based generalization measures can be delicate, since different (r, p) pairs can

produce opposite scaling behaviors (plateau vs. growth) as n increases.

Our contributions:

1. Strong sensitivity of the parameter norm as a function of the pair

(r, p) We find a strong qualitative effect for the scaling of the parameter norm

with data: for fixed p, certain ℓr norms plateau while others grow with different

slopes; varying p moves the elbow and reassigns which r’s plateau.

2. Closed-form scaling laws for parameter norms. We derive the first unified

closed-form scaling laws for this problem. For p ∈ (1, 2] and all r ∈ [1, p], we

identify the universal threshold r⋆ = 2(p − 1), give an explicit expression for

the transition size n⋆, and provide plateau levels and growth exponents in both

spike- and bulk-dominated regimes via a compact dual–ray argument.
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3. Extension of our theory to DLNs. We map the DLN initialization scale to

geometry: α 7→ peff(α). Using this map, we transfer the theory to DLNs and

verify the predicted elbow/threshold behavior of the parameter norm empirically.

Implications for practice. Because many norm-based generalization measures

and diagnostics depend on ∥ŵ∥r, our results imply that practitioners using norm-

based bounds or proxies—especially in more complex models such as DNNs—should

be cautious: conclusions can be highly sensitive to the choice of r, and the sensitivity

depends on the underlying ℓp bias that selects the interpolator.

5.2 Related work

The focus of this paper is a basic question: for overparameterized linear regres-

sion and related diagonal linear networks (DLNs), how do the parameter norms

{∥ŵ∥r}r∈[1,p] scale with sample size when the interpolator is selected by an ℓp

bias? The links to generalization are therefore indirect: norm quantities often

appear as proxies in modern generalization measures [Neyshabur et al., 2015b,

Bartlett et al., 2017a, Dziugaite and Roy, 2017a], so understanding their n–scaling

is informative, but we do not develop new generalization bounds here. Relatedly,

recent analyses derive explicit norm upper bounds as intermediate steps toward

generalization—often via Gaussian min–max techniques—for interpolators and

max-margin procedures [Koehler et al., 2021, Donhauser et al., 2022].

The ℓr family of linear–regression interpolators. A large body of work

characterizes how explicit ℓp penalties shape linear estimators: ridge/Tikhonov (ℓ2)

[Hoerl and Kennard, 1970], lasso (ℓ1) [Tibshirani, 1996, Efron et al., 2004, Knight

and Fu, 2000, Zou, 2006], elastic net (mixtures of ℓ1 and ℓ2) [Zou and Hastie, 2005],

and the bridge family (ℓp for 0 < p ≤ 2) [Frank and Friedman, 1993]; basis pursuit

gives the sparse interpolating extreme under equality constraints [Chen et al., 2001,

Candès and Tao, 2007, Donoho, 2006, Bickel et al., 2009]. High–dimensional convex-

geometric analyses explain when these programs select structured solutions and
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how their solutions move with the data geometry [Chandrasekaran et al., 2012,

Amelunxen et al., 2014, Bühlmann and van de Geer, 2011, Wainwright, 2019],

and recent developments give precise characterizations for ridgeless (minimum-ℓ2)

interpolation and its risk [Hastie et al., 2022a,b]. Our contribution complements

this literature by treating the entire norm family {∥ŵp∥r}r∈[1,p] for minimum–ℓp
interpolators (with p ∈ (1, 2]) and deriving closed-form, high-probability scaling

laws in n across r. In this sense we move from “which p shapes which estimator?”

to “given p, how do all ℓr diagnostics behave as data grow?”

Overparameterization in regression and deep networks. The deep-learning

era stimulated a re-examination of overparameterized regression, revealing phe-

nomena such as double descent [Belkin et al., 2019, Nakkiran et al., 2021, Zhang

et al., 2017, Nakkiran et al., 2020a, Adlam and Pennington, 2020] and benign

overfitting for minimum-norm interpolators [Bartlett et al., 2020, Hastie et al.,

2022b, Muthukumar et al., 2020]. These results show that linear regression can

capture qualitative behaviors seen in deep learning models and that the selected

interpolator’s norm matters for risk. Our work leverages this bridge as motivation

only: by explaining, in closed form, which ℓr norms plateau and which grow (and at

what rates) under an ℓp bias, we clarify what one should expect from norm-based

proxies commonly used in deep-net analyses. Because practical pipelines for deep

models rarely specify the effective p, our finding that ∥ŵp∥r depends sensitively on the

pair (r, p) suggests caution when interpreting norm-based generalization diagnostics.

Explicit/implicit regularization and DLNs. Beyond explicit penalties, op-

timization can select solutions with an implicit geometry [Soudry et al., 2018a,

Lyu and Li, 2020, Gunasekar et al., 2018b, 2017a]. In overparameterized linear

regression, gradient methods recover the minimum-ℓ2 interpolant; in factorized or

deep-linear parameterizations, the training dynamics induce separable potentials

that interpolate between sparse- and dense-leaning behaviors depending on ini-

tialization and parameterization [Saxe et al., 2014b, Gunasekar et al., 2018a, Ji

and Telgarsky, 2019b, Chizat et al., 2019, Woodworth et al., 2020]. We build on
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this perspective for DLNs: by calibrating the initialization scale to an effective

peff , we show empirically that DLNs inherit the same elbow/threshold laws for

{∥ŵ∥r} as explicit minimum–ℓp interpolation.

Proof techniques. Our analysis borrows standard high-dimensional tools used

throughout the modern regression literature—Gaussian concentration, blockwise

(signal-vs-bulk) decompositions, and dual certificates in convex programs [Ver-

shynin, 2018, Tropp, 2015]—and combines them with a one-dimensional “dual–ray”

reduction tailored to the ℓp penalty. Two closely related works derive norm upper

bounds as an intermediate step toward generalization, using the Gaussian Min–Max

Theorem (GMT) and its convex analogue (CGMT): Koehler et al. [2021], Donhauser

et al. [2022]. Their GMT/CGMT-based proofs are conceptually similar in spirit; by

contrast, our argument proceeds from first principles via a simple dual–ray balance

and yields closed-form n-scaling laws without invoking GMT/CGMT (see also

Gordon [1985], Thrampoulidis et al. [2015] for the GMT and CGMT statements).

5.3 Family of norm measures of minimum ℓp-norm
interpolator in linear models

We now formalize the object introduced in the overview: for p ∈ (1, 2] in overpa-

rameterized linear regression, we study the family {∥ŵp∥r}r∈[1,p] where ŵp is the

minimum-ℓp interpolator. Our goal is to characterize how these norms scale with

sample size n. Our results identify (i) a data-dependent elbow n⋆ and (ii) a universal

threshold r⋆ = 2(p − 1) that separates plateauing from growing ℓr’s.

Data and settings. We consider overparameterized linear models with X ∈ Rn×d,

d > n, rows i.i.d. N (0, Id), and

Y = Xw⋆ + ξ, ξ ∼ N (0, σ2In).

The minimum-ℓp interpolator is

ŵp ∈ arg min
w∈Rd

∥w∥p s.t. Xw = Y, p ∈ (1, 2].
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Let s = ∥w⋆∥0 denote the support size and τ 2
s := ∥w⋆∥2

2 + σ2. In contrast to

interesting recent work by Donhauser et al. [2022], our theory is not restricted

to the w∗ = e1 limit of extreme sparse regression.

5.3.1 Main theorem

Theorem 11 (ℓr scaling of minimum-ℓp interpolators). Fix p ∈ (1, 2], set q = p
p−1 ,

and take r ∈ [1, p]. Assume

d

n
→ κ ∈ (1,∞) and lim inf

n→∞

d− s
n

= κbulk > 0.

Let w⋆ have support S with |S| = s, and let

ŵp ∈ arg min
w∈Rd

∥w∥p s.t. Xw = Y.

Write Wq := ∥w⋆∥qq and mt := E|Z|t for Z ∼ N (0, 1). Define the ray scale t⋆ via

t q−1
⋆ ≍ ∥Y ∥2

2
∥X⊤Y ∥qq

≍ τ 2
s n

nqWq︸ ︷︷ ︸
spike

+ (d− s)mq τ
q
s n

q/2︸ ︷︷ ︸
bulk

+ O
(
τ qs (s nq/2 + s1+q/2)

)
︸ ︷︷ ︸

remainder

w.h.p..

(5.1)

Then, w.h.p. (see Remark A.2),

∥ŵp∥r ≍ max
{
t q−1
⋆ n q−1 ∥w⋆∥ q−1

(q−1)r, (d− s)1/r
(
t⋆ τs
√
n
) q−1

,

smax{ 1/r, (q−1)/2 }
(
t⋆ τs
√
n
) q−1

}
. (5.2)

Introduce the transition scale

n⋆ ≍
(
κbulk

τ qs
Wq

) 2
q−2
. (5.3)

In the two extremes, we obtain:

Spike-dominated (n≫ n⋆):

∥ŵp∥r ≍


τ q+1
s

Wq

n
1
r

− 1
2(p−1) , r ≤ 2(p− 1),

τ 2
s

Wq

∥w⋆∥ q−1
(q−1)r, r > 2(p− 1).

(5.4)
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Bulk-dominated (n≪ n⋆):

∥ŵp∥r ≍ max
{
κ

1
r

−1
bulk τs n

1
r

− 1
2 , κ−1

bulk τ
2−q
s ∥w⋆∥ q−1

(q−1)r n
q
2 −1,

κ−1
bulk τs s

max{ 1/r, (q−1)/2 } n−1/2
}
. (5.5)

Since d − s ≍ κbulkn, the last term equals τs

d−s s
max{1/r, (q−1)/2}√n. All ≍ hide

absolute constants depending only on (p, κbulk, r).

Remark (Dual viewpoint). The constrained problem minw 1
p
∥w∥pp s.t. Xw = Y has

unconstrained dual maxλ λ⊤Y − 1
q
∥X⊤λ∥qq, with KKT conditions Xw = Y and

X⊤λ = ∇f(w). Restricting to the ray λ = tY yields t q−1
⋆ = ∥Y ∥2

2/∥X⊤Y ∥qq. The

“spike” vs. “bulk” terminology refers to which part of ∥X⊤Y ∥q controls t⋆.

Proof sketch. The behavior of the minimum-ℓp interpolator can be read through

a simple dual lens: rather than track the optimizer directly, we examine a dual

certificate that both fits the labels and respects a norm budget after passing

through the design; pushing the dual along the label direction (a one-dimensional

“ray”) reveals a single diagnostic scale where the budget tightens, and this scale

is controlled by two competing sources in the correlations X⊤Y : a “spike” part

(true signal coordinates) that coherently accumulates with n, and a “bulk” part

(many null coordinates) that aggregates small, mostly noisy effects. Balancing

these two contributions defines a data-dependent transition sample size n⋆: for

n ≪ n⋆ the bulk dominates, the solution’s mass is effectively spread over many

coordinates, and the family {∥ŵp∥r} grows with n in the way our bulk formulas

predict (including the usual cross-r ordering and an n1/2-type trend visible in the

plots); for n≫ n⋆ the spike dominates, mass concentrates on the support, and a

clean threshold—determined by p at r = 2(p− 1)—splits the outcomes: ℓr plateaus

for r above the threshold and grows with a gentler, explicit slope for r below it.

Standard concentration for Gaussian designs justifies the spike/bulk decomposition

and the stability of the ray scale, and the KKT linkage between the dual certificate

and the primal coordinates turns these ingredients into the unified bound, the

expression for n⋆, and the two regime descriptions stated in the theorem. Full

details are deferred to Appendix A.2.
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5.4 Corollaries for canonical targets

To make the unified laws in Theorem 11 concrete, we specialize them to two

canonical targets: (i) a single spike w⋆ = e1, and (ii) a flat s-sparse vector with equal

magnitude a on its support. Substituting the problem-specific scales Wq = ∥w⋆∥qq
and τ 2

s = ∥w⋆∥2
2 + σ2 into the elbow formula (5.3) and the spike-/bulk-dominated

expressions (5.4)–(5.5) yields closed-form, high-probability predictions for ∥ŵp∥r
and the transition size n⋆. We record these specializations below as Corollaries 5.4.1

and 5.4.2, and use them as reference overlays in our experiments.

5.4.1 Single spike

Corollary 5.4.1 (Single spike). Under Theorem 11 with w⋆ = e1 and τ 2 = 1 + σ2,

for any r ∈ [1, p]:

Bulk-dominated (n≪ n⋆): ∥ŵp∥r ≍ τ (d− 1) 1
r

−1 n1/2,

Spike-dominated (n≫ n⋆): ∥ŵp∥r ≍

 τ q+1 n
1
r

− 1
2(p−1) if r ≤ 2(p− 1),

τ 2 if r > 2(p− 1).

Interpretation. Here Wq=1 and n⋆ ≍
(
κbulkτ

q
)2/(q−2)

from (5.3). For r > 2(p−1)

the ℓr curves plateau at level ≍ τ 2 once n ≫ n⋆; for r ≤ 2(p−1) they continue

to grow with slope 1
r
− 1

2(p−1) .

5.4.2 Flat support

Corollary 5.4.2 (Flat support). Under Theorem 11 and a flat w⋆ on S with |S| = s

and w⋆j = a sj for j ∈ S (|sj| = 1), for any r ∈ [1, p], w.h.p.:

Spike-dominated (n ≥ Cn⋆): ∥ŵp∥r ≍


(sa2 + σ2) q+1

2

s|a|q
n

1
r

− 1
2(p−1) r ≤ 2(p− 1),

s
1
r

−1 sa
2 + σ2

|a|
2(p− 1) < r ≤ p,

Bulk-dominated (n ≤ cn⋆): ∥ŵp∥r ≍ max
{
κ

1
r

−1
bulk τs n

1
r

− 1
2 , κ−1

bulk τ
2−q
s s1/r|a|q−1 n

q
2 −1,

κ−1
bulk τs s

max{1/r, (q−1)/2} n−1/2
}
.



5. Closed-form ℓr Norm Scaling with Data for Overparameterized Linear Regression
and Diagonal Linear Networks under ℓp Bias 100

Interpretation. HereWq=s|a|q and τ 2
s=sa2+σ2, so (5.3) gives n⋆ ≍

(
κbulkτ

q
s /(s|a|q)

)2/(q−2)
,

which grows with s (the elbow shifts to larger n). In the spike-dominated plateau

branch (r > 2(p−1)) the level scales as s 1
r

−1 (sa2+σ2)/|a|, which is typically of the

same order as the single-spike plateau for moderate s.

Comparison across targets. The threshold r = 2(p− 1) and the n-exponents in

both regimes are unchanged between Corollaries 5.4.1 and 5.4.2. The differences lie in

the scales: (i) the transition size moves from n⋆ ≍ (κbulkτ
q/Wq)2/(q−2) with Wq=1,

τ 2=1+σ2 (single spike) to n⋆ ≍ (κbulkτ
q
s /Wq)2/(q−2) with Wq=s|a|q, τ 2

s=sa2+σ2

(flat), which scales roughly linearly in s (cf. (5.3)). Hence the elbow for regime

change shifts to larger n when we move from e1 to a flat w⋆ with s=50. (ii) In the

spike-dominated plateau branch (r > 2(p− 1)), the level changes from ≍ τ 2 (single

spike) to ≍ s
1
r

−1 (sa2+σ2)/|a| (flat) [cf. (5.4) and Corollary 5.4.2]; for moderate s

this produces comparable numerical magnitudes, which is why the vertical ranges in

our figures are similar. The regime labels (bulk vs. spike) and their slopes/plateaus

therefore provide the informative contrast.

5.4.3 Linear regression with explicit minimum-ℓp bias

Here the inductive bias is explicit: for a chosen p, the interpolator is the minimum-ℓp
element among all w with Xw = Y . Sweeping p slides the solution from a more

sparse-leaning geometry as p ↓ 1 toward a more dense-leaning geometry as p ↑ 2,

revealing how the objective itself shapes the family {∥ŵp∥r}r.

Experimental protocol. We set σ = 0.1, sweep p ∈ {1.1, 1.5, 1.9}, and vary

n. Each plot overlays test MSE (left axis) and representative ℓr curves (right

axis). For flat w∗ experiments, we kept ∥w∗∥2 = 1, i.e. a = 1√
s
. Additional noise

sweeps are reported in Appendix 5.7.

What the figures show and why. In Fig. 5.1 (single spike), the left/middle/right

panels follow the corollary’s regime rules. In the left panel, for r > 2(p−1) the

curves flatten after the transition, while for smaller r they retain the predicted

growth; thin reference overlays (where present) trace these slopes. The middle
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panel exhibits a clear elbow near the predicted n⋆; beyond it, the r > 2(p−1) curves

plateau in line with (5.4), while the others keep their slope. The right panel stays

bulk-dominated across the range, with the ℓr traces growing approximately as n1/2

and ordered across r as the bulk formula prescribes.

In Fig. 5.2 (flat w⋆ with s=50), the same slope/plateau rules apply, but the

transition scale is larger: the elbow for p=1.5 appears at a later n (or just off-range),

consistent with n⋆ increasing roughly linearly with s in (5.3). Across panels, the

absolute ℓr values are numerically similar to Fig. 5.1; this matches the flat-support

plateau level in Corollary 5.4.2, which for moderate s is close to the single-spike level.

The informative distinction is thus where the curves switch from bulk growth to spike

plateaus and the persistence of the n1/2 slope in regimes that remain bulk-dominated.

Experiments with larger sparsity. We repeat the explicit minimum-ℓp runs at

larger supports, s ∈ {500, 5000}, with the same ∥w⋆∥2=1 and noise level (σ = 0.1);

see Appendix 5.9, Figs. 5.17-5.18. The qualitative picture from s=50 reappears but

shifts to larger n, consistent with the transition size n⋆ in (5.3) growing with s. For

small p (p=1.1), the prolonged bulk-dominated window makes the double-descent

pattern visible—generalization error first increases and then drops (most clearly

at s=5000)—while the blue ℓ1.1 curve keeps rising along the bulk guide across the

plotted range [Belkin et al., 2019, Nakkiran et al., 2020b, Hastie et al., 2022a]. For

larger p (p=1.5, 1.9), the curves remain monotonically decreasing; the minimized

ℓp traces drift only mildly upward (no flattening within the range), reflecting the

rounder geometry that avoids early over-reliance on noisy bulk directions. In all

panels, the dashed overlays track the bulk/spike trends and the expected r-ordering

of the ℓr diagnostics, matching the regime structure highlighted in the theory.

5.4.4 Diagonal linear network with implicit bias

Diagonal linear networks (DLNs) - deep linear models whose weight matrices are

diagonal so that the effective predictor is the coordinatewise product of layer

parameters—provide a tractable testbed for understanding optimization-induced
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Figure 5.1: Single spike w⋆ = e1; explicit minimum-ℓp interpolation. Ordering
across r and the presence/absence of elbows follow Corollary 5.4.1; the bulk panels rise
like n1/2 and the spike-side panels plateau for r > 2(p−1), consistent with (5.4)-(5.5).
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Figure 5.2: Flat w⋆ (s = 50); explicit minimum-ℓp interpolation. The scaling
rules mirror the flat-support corollary: bulk growth persists until a larger transition scale,
while spike-side r values plateau; absolute levels are comparable to the single-spike case,
as predicted by the plateau formulas.

geometry and implicit bias in overparameterized systems. They connect classical

analyses of linear nets and factorized parameterizations [Saxe et al., 2014a, Ji

and Telgarsky, 2019a, Arora et al., 2019a, Gunasekar et al., 2017b] with recent

perspectives on how initialization and parameterization interpolate between “rich”

and “kernel” behaviors [Chizat et al., 2019, Woodworth et al., 2020]. A particularly

useful feature—formalized for DLNs via a separable gradient-flow potential—is

that the scale of the initialization, denoted α, continuously tunes the implicit bias:

small α yields a sparse-leaning geometry (an ℓ1-like penalty up to logarithmic

factors), while large α approaches an ℓ2
2-type geometry; see the potential Qα and

its limits (Theorem 1 in Woodworth et al. [2020]) and related characterizations

in Gunasekar et al. [2017b], Arora et al. [2019a].

Calibrating α via an effective p. To compare DLN runs with our explicit

minimum-ℓp experiments, we convert α into an effective p by a data-free calibration.
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Following the separable potential view, we evaluate Qα on k-sparse, unit-ℓ2 probes

and fit the log-log slope of its k-dependence; matching that slope to the exact k 1−p/2

law of ∥ · ∥pp yields a monotone map α 7→ peff(α) with limits peff(α)→1 as α→0 and

peff(α)→2 as α→∞. This calibration is independent of (n, σ) and lets us select α

values that span a sparse-to-dense range comparable to p ∈ {1.1, 1.5, 1.9}. A full

derivation and a visualization of α 7→ peff(α) are provided in Appendix 5.6.

Finite learning rate. With a single-spike target (w⋆ = e1, sparsity s=1) and

small initialization (α = 0.00102, so peff≈1.10), we find that the learning rate lr can

materially change the ℓr-vs-n scaling once label noise is present. When σ=0, the ℓ1.1

curve rapidly plateaus and is essentially insensitive to lr (see Appendix 5.8 for more

details). In contrast, for σ ∈ {0.1, 0.5} increasing lr produces a steadily rising ℓ1.1

and shifts the elbow to larger n; at the highest noise the effect is strongest-lr=10−1

yields monotone growth across our range, whereas lr=10−3 exhibits a transient rise

followed by relaxation toward a plateau, indicating a rightward-moving elbow. We

observe qualitatively similar trends for larger sparsity (s=50). A natural explanation

is that finite step size together with noisy gradients turns (stochastic) gradient

descent into a noisy dynamical system with an effective temperature that scales with

lr and the noise level. The resulting diffusion broadens the stationary distribution

and biases the predictor toward rounder (less sparse) geometries-effectively increasing

peff-so mass leaks into bulk coordinates, delaying spike dominance and inflating

ℓr before the eventual plateau [Mandt et al., 2017, Smith et al., 2018, Yaida,

2018, Jastrzebski et al., 2017a].

Experimental protocol. We set σ = 0.1, sweep α ∈ {0.00102, 0.0664, 0.229}

(which according to our α to p calibration ≈ p ∈ {1.1, 1.5, 1.9}), and vary n. Each

plot overlays test MSE (left axis) and representative ℓr curves (right axis). For flat

w∗ again a = 1√
s
. Additional noise sweeps are reported in Appendix 5.7.

Because α has been empirically calibrated to peff(α), the DLN panels mirror

the scaling behavior seen with explicit minimum-ℓp: for w⋆ = e1 (Fig. 5.3), smaller

α (smaller peff) enters the spike-dominated regime earlier so that, for r > 2(p−1),
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Figure 5.3: Single spike w⋆ = e1; diagonal linear network (DLN). After calibrating
α to peff(α), the regime structure matches the explicit p case: smaller α exhibits earlier
spike dominance and plateaus for r > 2(p−1); larger α remains bulk-dominated with
n1/2-like growth.
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Figure 5.4: Flat w⋆ (s = 50); diagonal linear network (DLN). The same scaling
rules hold, but the elbow appears at larger n—in line with the flat-support transition
scale—while absolute ℓr magnitudes remain comparable to the single-spike case.

the ℓr curves flatten after the transition; larger α remains bulk-dominated longer

and the traces grow with the characteristic n1/2 trend. For the flat target with

s=50 (Fig. 5.4), the same rules apply but the elbow shifts to larger n, consistent

with the s-dependent transition scale in the flat-support corollary. The absolute

magnitudes of ∥ŵ∥r are similar across the two targets, as predicted by the plateau

formulas, so the informative contrast again lies in the location of the elbow and

the presence/absence of plateaus vs. bulk growth. We do not overlay theory on

the DLN plots: our guarantees are stated in terms of the explicit parameter p,

and deriving a closed-form α-indexed analogue (especially under finite learning

rates) is outside the scope of this work; the α 7→ peff calibration serves precisely

to make the scaling correspondence visible. In Appendix D.1 we discuss how can

we extend our main theorem to DLNs with explicit α.
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5.5 Conclusion and discussion

We provided the first unified, closed-form characterization of how the entire family

of norms {∥ŵp∥r}r∈[1,p] scales with sample size in overparameterized linear regression

under minimum-ℓp interpolation (p ∈ (1, 2]). A one-dimensional dual-ray argument

exposes a competition between a signal spike and a bulk of null coordinates in X⊤Y

and yields, with high probability: (i) a data-dependent elbow n⋆ at which bulk

and spike balance [Eq. 5.3], and (ii) a universal threshold

r⋆ = 2(p− 1),

which separates ℓr’s that ultimately plateau (r > r⋆) from those that continue to

grow with an explicit exponent (r ≤ r⋆) in the spike-dominated regime (Theorem 11).

The formulas give plateau levels and slopes in both bulk- and spike-dominated

regimes, and specialize cleanly for canonical targets (single spike and flat support).

Empirically, diagonal linear networks (DLNs) trained by gradient descent inherit

the same elbow/threshold laws once the initialization scale α is calibrated to

an effective peff(α) via the separable potential. Together, these results show

that which ℓr one tracks matters: for a fixed ℓp bias, different ℓr’s can exhibit

qualitatively different n-laws.

Intuition behind the regime transition. The dual-ray lens reduces the

interpolation geometry to a single scale t⋆ controlled by ∥X⊤Y ∥q (q = p/(p− 1)).

The bulk contributes ≍ (d − s)mq τ
q
sn

q/2 while the spike contributes ≍ nqWq,

and their balance sets the elbow n⋆. Above the elbow, the KKT map raises

correlations to the (q − 1) power; the sign of 1
r
− 1

2(p−1) dictates whether the

bulk-type term decays (plateau) or grows (slope). This is the origin of the sharp

threshold r⋆ = 2(p − 1). Geometrically, smaller p (sparser inductive bias) lowers

r⋆, so more ℓr’s plateau once the spike dominates; as p ↑ 2, r⋆ approaches 2 and

spike-side plateaus recede, consistent with the special role of p = 2 where there

is no n-driven transition in the proportional limit.

Implications for generalization proxies. Many diagnostics and bounds

in modern learning scale with a parameter norm (or a reparameterization-aware
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surrogate). Our results indicate that the predictive power of such proxies is norm-

choice sensitive. For a given ℓp bias, ℓr’s above r⋆ stabilize (after n⋆) and can

serve as geometry-aligned capacity proxies, while ℓr’s below r⋆ continue to reflect

data growth through explicit exponents. In practice, the pair (n⋆, r⋆) acts as a

norm-scaling signature. Reporting only one norm—often ℓ2—risks conflating bulk

vs. spike effects and can obscure regime changes that are visible in the ℓr family.

From explicit to implicit bias. By calibrating DLN initialization via a

simple slope-matching map α 7→ peff(α), the empirical DLN curves line up with the

explicit minimum-ℓp predictions under p ← peff(α). This provides a quantitative

bridge between explicit and implicit bias: initialization steers the effective geometry,

and the (n⋆, r⋆) structure is inherited. Finite learning rates in the presence of

label noise act like an effective temperature, increasing peff and shifting elbows

rightward—consistent with recent views of SGD as a noisy dynamical system.

Relation to double descent and benign overfitting. The bulk-side growth

(∝ n1/2 in prominent terms) and its eventual handoff to spike control rationalize

when increasing n first harms and then helps: early fits draw from many noisy bulk

directions (large norms and higher variance), while beyond n⋆ the spike dominates

and the relevant ℓr’s plateau. Our explicit exponents and thresholds sharpen this

picture and make precise which ℓr will display which trend at a given (p, n).

Scope and limitations. Our guarantees assume isotropic Gaussian design,

p ∈ (1, 2], squared loss, and exact interpolation. At p = 2 the proportional regime

admits no n-driven elbow. The DLN extension uses a data-free calibration to peff(α)

rather than a fully rigorous, learning-rate-aware theory. Finally, classification losses

and non-linear features (beyond DLNs) are outside our formal scope.

Actionable guidance. (i) When using norm-based capacity control, choose the

norm with the geometry: if training is ℓp-biased (explicitly or implicitly), track ℓr with

r > 2(p−1) to obtain a stable, post-elbow proxy; use r ≤ 2(p−1) when one wants a

readout that continues to reflect data growth. (ii) Empirically estimate (n⋆, r⋆) by



5. Closed-form ℓr Norm Scaling with Data for Overparameterized Linear Regression
and Diagonal Linear Networks under ℓp Bias 107

fitting the predicted slopes to a small ℓr grid; this gives a compact fingerprint of

model-data geometry and a practical meter for bulk vs. spike dominance.

Future directions:

• Beyond isotropy and Gaussianity. Extend the dual-ray analysis to anisotropic/sub-

Gaussian designs (via whitening) and to heavy-tailed covariates; characterize

how n⋆ and possibly r⋆ deform with the spectrum and tails of X.

• From DLNs to nonlinear nets. Replace the power link by depth-dependent im-

plicit links in deep (nonlinear) architectures (e.g., path-norm or neural tangent/feature-

learning regimes) and test whether an r⋆-type threshold persists.

• Algorithmic knobs as geometry. Develop a theory of peff that accounts for

step size, batch size, momentum, and label noise (Langevin/SGD limits), turning

these knobs into quantitative geometric parameters with predictions for (n⋆, r⋆).

• Classification and margins. Generalize the scaling laws to separable classifi-

cation with cross-entropy/hinge losses, relating r⋆ to margin exponents and the

growth/saturation of norm families along max-margin flows.

• Tighter, r-aware bounds. Build generalization bounds that track the family

{∥ŵ∥r} and explicitly incorporate the elbow/threshold structure, connecting to

PAC-Bayes and margin-based analyses.

• Practical diagnostics. On modern deep models, measure several ℓr-style

surrogates (e.g., path norms) across data scale to estimate (n⋆, r⋆) and evaluate

which norms are reliable predictors of test error across regimes.

Overall, our results advocate replacing the monolithic notion of “the norm” by

a family view. The elbow n⋆ and the threshold r⋆ provide simple, interpretable

invariants that tie together explicit/implicit bias, data growth, and norm-based

generalization measures, and they offer a compact vocabulary for describing—and

ultimately controlling—interpolation in high dimensions.



Supplementary Material for Chapter 5

5.6 From initialization scale to an effective ℓp: a
slope-matching view

Figure 5.5 visualizes the mapping α 7→ peff(α) we use throughout. The construction

is data-free (independent of n and σ) and relies only on the gradient-flow potential

that characterizes the two-layer DLN implicit bias. Pseudocode can be found

in Algorithm 1.

We start from the separable potential

Qα(β) = α2
d∑
i=1

q

(
βi
α2

)
, (5.6)

q(z) =
∫ z

0
arcsinh

(
u

2

)
du = 2−

√
4 + z2 + z arcsinh

(
z

2

)
. (5.7)

At the coordinate level, letting ψα(t) ≡ α2 q(t/α2) gives

ψ′
α(t) = arcsinh

(
t

2α2

)
, (5.8)

ψ′′
α(t) = 1

α2
√

4 + (t/α2)2
= 1√

4α4 + t2
. (5.9)

Asymptotics for q control the limiting geometry (all logs are natural):

q(z) = z2

4 −
z4

192 +O(z6), z → 0, (5.10)

q(z) = z(log z − 1) + 2− 1
z

+O
( 1
z3

)
, z →∞. (5.11)

Hence Qα behaves like ℓ2
2 as α→∞ and like an ℓ1-type penalty (up to a log) as α→0.

To turn this into a quantitative α 7→ p mapping, we evaluate Qα on the k-

sparse, unit-ℓ2 probes

β(k) ∈ Rd, β
(k)
i ∈ {0, k−1/2}, ∥β(k)∥2 = 1, #{i : β(k)

i ̸= 0} = k. (5.12)
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For this family,

Qα

(
β(k)

)
= α2 k q

(
1

α2
√
k

)
, (5.13)

while ℓp (calibrated via ∥β∥pp) has the exact scaling

∥β(k)∥pp = k

(
1√
k

)p
= k 1−p

2 . (5.14)

We now fit a log-log slope to the k-dependence of Qα and match exponents. Fix

α > 0, choose a logarithmic grid K ⊂ {1, 2, . . . , d} (e.g., up to 104), and solve

logQα

(
β(k)

)
≈ c(α) + s(α) log k, k ∈ K. (5.15)

Comparing with (5.14) (which grows as k 1−p/2) yields

s(α) = 1− peff(α)
2 =⇒ peff(α) = 2(1− s(α)) . (5.16)

The limits in (5.10)–(5.11) imply

α→∞ : Qα

(
β(k)

)
= 1

4α2 +O
( 1
α6k

)
, s(α)→ 0, peff(α)→ 2, (5.17)

α→ 0 : Qα

(
β(k)

)
=
√
k
(

log
(

1
α2

√
k

)
− 1

)
+ 2α2k − α4k

√
k + O

(
α8k2
√
k
)
,

s(α)→ 1
2 ,

peff(α)→ 1.
(5.18)

Thus peff(α) increases smoothly and monotonically from 1 to 2 as α grows,

exactly as depicted in Figure 5.5. The inverse problem—choosing α for a target

p⋆ ∈ [1, 2]—is the scalar root

peff(α) = p⋆, (5.19)

which we solve by bisection using the monotonicity in α (Algorithm 2).
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Algorithm 1 Slope-matching map α 7→ peff(α)
Require: Log-grid A of α values; log-grid K ⊂ {1, . . . , d} of k values
Ensure: {(α, peff(α)) : α ∈ A}

1: for all α ∈ A do
2: Initialize lists X ← [ ], Y ← [ ] ▷ X = {log k}, Y = {logQα(β(k))}
3: for all k ∈ K do
4: zk ← 1/(α2

√
k)

5: Compute q(zk) using the closed form in (5.7); if |zk| is small, use the
series q(z) = z2/4− z4/192 + z6/2560 + · · · for stability

6: Qk ← α2 k q(zk)
7: Append log k to X; append logQk to Y
8: end for
9: Fit Y ≈ c(α) + s(α)X by least squares

10: peff(α)← 2 (1− s(α)) ▷ by (5.16)
11: end for
12: return {(α, peff(α)) : α ∈ A}

Algorithm 2 Inverse map p⋆ 7→ α⋆ by bisection in logα
Require: Target p⋆ ∈ [1, 2]; grid K; bracket 0 < αmin < αmax with peff(αmin) ≤

p⋆ ≤ peff(αmax); tolerance ε > 0
Ensure: α⋆ with

∣∣∣peff(α⋆)− p⋆
∣∣∣ ≤ ε

1: umin ← logαmin, umax ← logαmax
2: while umax − umin > ε do
3: umid ← 1

2(umin + umax), αmid ← eumid

4: Compute peff(αmid) via Algorithm 1 restricted to this single α
5: if peff(αmid) < p⋆ then
6: umin ← umid
7: else
8: umax ← umid
9: end if

10: end while
11: return α⋆ ← e(umin+umax)/2

5.7 Additional noise sweeps: σ ∈ {0, 0.5}

Experimental protocol. We replicate the experiments of §5.4.3 and §5.4.4 at

two additional noise levels, σ = 0 and σ = 0.5, keeping everything else fixed (same

p ∈ {1.1, 1.5, 1.9} for explicit minimum-ℓp runs; same α ∈ {0.00102, 0.0664, 0.229}

for DLNs with the same α 7→peff calibration as in Appendix 5.6; same seeds and

learning rates as indicated in the panel captions). Each plot overlays test MSE

(left axis) and representative ℓr curves (right axis).
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Figure 5.5: Slope-matching map α 7→ peff(α) (Algorithm 1), obtained by fitting the
k-sparse scaling of Qα(β(k)) against the exact k 1−p/2 scaling of ∥β(k)∥pp. Target points
(p∈{1.1, 1.5, 1.9}) are annotated; their corresponding α are solved by Algorithm 2.
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Figure 5.6: Single spike w⋆ = e1; explicit minimum-ℓp interpolation (σ = 0).
Earlier elbows and lower spike-side plateaus than at σ=0.1; bulk-side traces keep the n1/2

slope, consistent with (5.4)-(5.5).

What the figures show and why. In Fig. 5.6-Fig. 5.13, the slopes and regime

rules from Theorem 11 and Corollaries 5.4.1-5.4.2 are unchanged across σ; noise

only rescales τs and thereby shifts the transition size n⋆≍(κbulkτ
q
s /Wq)2/(q−2) [(5.3)]

and the spike-side plateau levels [(5.4)]. Thus, compared to σ=0.1 in the main text:

(i) at σ=0 elbows appear earlier and plateaus (for r > 2(p−1)) occur sooner and

at lower levels; (ii) at σ=0.5 elbows are delayed and spike-side plateaus are higher.

Bulk-dominated panels retain the n1/2 growth and the r-ordering in (5.5).

5.8 Finite learning rate effects

We consider the single-spike case w⋆ = e1 and a small shape parameter α = 0.00102

(so the calibrated peff(α)≈1.10). We vary the learning rate lr ∈ {10−1, 10−2, 10−3}
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Figure 5.7: Flat w⋆ (s = 50); explicit minimum-ℓp interpolation (σ = 0). Same
slope/plateau rules as Corollary 5.4.2, with a reduced transition scale and lower absolute
ℓr levels compared to σ=0.1.
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Figure 5.8: Single spike w⋆ = e1; DLN (σ = 0). With α calibrated to peff(α), the
regime structure mirrors the explicit p case: smaller peff exhibits earlier spike dominance
and plateaus for r > 2(p−1); larger peff stays bulk-dominated longer.

and the label-noise level σ ∈ {0, 0.1, 0.5}. All panels plot generalization error (left

axis) and ℓ1.1 norm (right axis) versus sample size n.

Observed effect. With clean labels (σ = 0), the ℓ1.1 norm is essentially flat

across n and insensitive to lr (Fig. 5.14), consistent with a low-peff (sparse) implicit

bias at small α. When label noise is present (σ ∈ {0.1, 0.5}), increasing the

learning rate makes ℓ1.1 increase with n (Figs. 5.15, 5.16); the transition point (the

“elbow”) beyond which the norm would plateau shifts to larger n as lr grows. Within

the accessible sample sizes this rightward shift makes the curve look bulk-dominated

and rising—as if the effective exponent peff were larger.

Why this happens. Finite step size together with label/gradient noise injects

additional stochasticity into the discrete dynamics. A useful approximation views

(stochastic) gradient descent as a Langevin-type process with an effective temperature

controlled by the learning rate and the noise level; this broadens the stationary
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Figure 5.9: Flat w⋆ (s = 50); DLN (σ = 0). The elbow shifts with support size as in
the flat-support corollary; plateaus for r > 2(p−1) occur earlier and at lower levels than
at σ=0.1, while bulk-side n1/2 growth persists where predicted.
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Figure 5.10: Single spike w⋆ = e1; explicit minimum-ℓp interpolation (σ = 0.5).
Larger τ increases both n⋆ and plateau heights relative to σ=0.1. Bulk-dominated panels
retain the n1/2 trend; r > 2(p−1) traces flatten only after the later transition, in line with
(5.4)-(5.5).

distribution and leads to wider, less sparse solutions [Mandt et al., 2017, Smith et al.,

2018, Yaida, 2018, Jastrzebski et al., 2017a]. For a single-spike target, that diffusion

leaks mass into off-signal coordinates during early training, nudging the geometry

away from “ℓ1-like” toward a higher-p regime and delaying when the spike dominates—

hence the elbow shifts right. With clean labels, the gradient remains aligned with

the spike and the small-step implicit bias toward path/diagonal-norm solutions is

recovered [Neyshabur et al., 2015a, Gunasekar et al., 2018a]. The same qualitative

phenomenon also appears for the denser case s=50 with a smaller magnitude.

5.9 Larger sparsity s for explicit min ∥w∥p linear
regression

We revisit the explicit min ∥w∥p experiments at larger sparsities s ∈ {500, 5000}

for p ∈ {1.1, 1.5, 1.9} under the same Gaussian design and noise σ = 0.1 as in
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Figure 5.11: Flat w⋆ (s = 50); explicit minimum-ℓp interpolation (σ = 0.5). The
same slope/plateau rules apply, but both the elbow and plateau heights shift upward with
σ via τs and (5.3).
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Figure 5.12: Single spike w⋆ = e1; DLN (σ = 0.5). After calibrating α 7→peff , bulk
growth persists to larger n (larger n⋆), and spike-side plateaus for r > 2(p−1) emerge
later and at higher levels.

the main text. Each panel reports generalization error (left axis) and several

ℓr-norms of the same interpolating w (right axis); gray dashed curves are the

bulk/spike theory overlays used earlier.

Comparison to s=50. Across all three p values, the larger-s experiments reprise

the main-text regime structure at larger sample sizes. For p ≈ 1, lengthening the

bulk-dominated segment makes the initial increase in generalization error clearly

visible (especially at s=5000), after which the curve turns downward as alignment

improves. For p ∈ {1.5, 1.9}, the same right-shift occurs yet the curves remain

monotone; the rounder objectives keep the estimator from over-relying on noisy

directions early on. In every panel, the blue ℓ1.1 curve remains a useful “regime

meter”: rapid growth signals bulk influence, and gradual approach toward the

spike guide signals improving alignment—even though none of the ℓr curves truly

flatten within our plotted range.
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Figure 5.13: Flat w⋆ (s = 50); DLN (σ = 0.5). The σ-driven increase in τs shifts
n⋆ to larger n; otherwise the bulk vs. spike regime behavior matches the theory and the
explicit p experiments.
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Figure 5.14: w⋆ = e1 (sparsity s=1), clean labels. ℓ1.1 rapidly plateaus and is
insensitive to learning rate, consistent with a low-peff implicit bias at small α.

Small p (here p=1.1). Relative to the s=50 panels in the main text, both larger-s

slices preserve the same two-phase story but the handoff happens later in n. At

s=500 (Fig. 5.17a), generalization error is flat-to-slightly higher at small n while

∥w∥1.1 rises rapidly; as n grows, generalization error begins to fall and the blue

curve bends toward (but, in our range, does not meet) the spike overlay. At s=5000

(Fig. 5.18a), the shape is unmistakable: generalization error first increases to a

visible peak at intermediate n and then drops. The ℓ1.1 curve keeps climbing

throughout the displayed range, tracking the bulk-dominated guide before gradually

approaching the spike prediction (without flattening). This “up-then-down” with

more samples matches the double-descent picture for interpolating estimators—early

fits lean on high-variance bulk directions; only later does the solution align with

signal—well documented in linear and deep settings [Belkin et al., 2019, Nakkiran

et al., 2020b, Hastie et al., 2022a].
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Figure 5.15: w⋆ = e1 (sparsity s=1), moderate noise. Larger learning rates produce
a steadily rising ℓ1.1 and shift the elbow to larger n; decreasing lr suppresses the rise and
restores a near-plateau.
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Figure 5.16: w⋆ = e1 (sparsity s=1), heavy noise. The learning-rate-induced increase
in ℓ1.1 is strongest at high noise: lr=0.1 (and to a lesser extent 0.01) yields monotone
growth with n, whereas lr=0.001 shows a transient bump and then relaxes toward a
plateau—evidence that the elbow shifts right under larger lr.

Larger p (here p=1.5 and p=1.9). Compared to s=50, the curves again shift

rightward in n, but the qualitative picture is unchanged: generalization error

decreases monotonically over the whole range for both sparsities (Figs. 5.17b-c and

5.18b-c). The minimized ℓp-norms (red for p=1.5, green for p=1.9) drift only slightly

upward rather than plateauing, while the auxiliary ℓ1.1 diagnostic continues its steady

growth along the bulk guide. The absence of an initial increase in generalization

error is consistent with the rounder geometry of larger-p balls: the interpolating

solution spreads weight more evenly and avoids the brittle, variance-heavy fits

that create the small-p bump, echoing analyses of benign overfitting/ridgeless least

squares and convex-geometric shrinkage of descent cones [Bartlett et al., 2020,

Hastie et al., 2022a, Chandrasekaran et al., 2012, Amelunxen et al., 2014].
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Figure 5.17: Large sparsity, s=500. Black—generalization error; colored—ℓr-norms of
the same interpolator (blue: ℓ1.1, red: ℓ1.5, green: ℓ1.9); gray dashed—bulk/spike overlays.
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Figure 5.18: Even larger sparsity, s=5000. Same conventions as Fig. 5.17. Increasing
s shifts the bulk→spike crossover to larger n.



6
Conclusion

Modern deep learning systems succeed because they often generalize even when

heavily overparameterized. This thesis has argued that to understand and reliably

measure that generalization, it is more fruitful to reason in function space and to

insist on diagnostics that are invariant to benign reparameterizations and stable

under routine training changes. The three studies assembled here move along a

single arc: from interrogating geometric intuitions in parameter space, through

auditing the fragility of popular surrogates, to deriving explicit scaling laws that

explain when and why norm-based proxies can help or mislead.

The first study showed that flatness, while often correlated with test performance,

cannot be treated as a universal yardstick. Simple rescalings and optimizer choices

can push flatness measures to arbitrarily different values without changing what the

network computes, whereas a function-space quantity—the prior over functions, or

logP (f)—tracks generalization robustly across architectures and training algorithms.

This contrast highlights a central theme of the thesis: good diagnostics should

respect the symmetries of the predictor and live where prediction lives, namely

in function space rather than in a particular parameterization. Read this way,

logP (f) is valuable not because it is fashionable, but because it encodes invariances

that flatness lacks.
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The second study widened the lens and asked a pragmatic question: how do

popular generalization measures behave under small, reasonable changes to the

training pipeline or the task? The answer, made concrete by fragility audits, is

that many magnitude-sensitive, post-mortem surrogates bend, invert, or balloon

even when accuracy hardly moves, and they often fail to reflect genuine increases in

task difficulty. By contrast, a marginal-likelihood route in function space mirrors

learning-curve trends as properties of the data, and remains largely indifferent

to optimizer path once the training set is interpolated. This suggests a practical

stance: before trusting a surrogate, we should stress-test it for reparameterization

invariance, optimizer/schedule stability, and sensitivity to data difficulty. When

such audits are routine, we learn quickly which diagnostics capture properties of

the learned function and which ones mostly measure accidents of the training path.

The third study provided theory that explains why norm-based proxies can

behave so differently across regimes. In high-dimensional linear regression with

explicit minimum-ℓp bias and in diagonal linear networks with implicit bias, we

derived closed-form scaling laws for the entire family of parameter norms {∥w∥r}

as the sample size grows. Two structural features emerged: a data-dependent

transition size (an elbow in n) and a universal threshold r⋆ = 2(p−1) that separates

norms that eventually plateau from those that continue to grow with explicit

exponents. Calibrating initialization in diagonal linear networks reveals the same

elbow/threshold pattern through an effective p, clarifying why seemingly similar

norm diagnostics can diverge sharply in practice. These results advise care when

choosing a norm on which to hang generalization claims: different (r, p) pairs can

produce opposite scaling behaviors under the same training pipeline, so the right

proxy depends on the operative bias and data geometry.

Taken together, the studies support a coherent picture. If our goal is to anticipate

out-of-sample performance, we should prefer diagnostics that are invariant under

transformations that preserve the predictor, we should verify stability under benign

pipeline changes, and we should ground proxy quantities in explicit, data-aware
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scaling behavior. The function-space prior provides one such anchor; fragility-

first audits supply a lightweight methodology for vetting alternatives; and scaling

laws in simplified but revealing models show how inductive bias, sample size,

and data anisotropy shape whole families of proxies. None of these elements

is sufficient on its own, but together they offer a robust path from geometric

intuition to reliable practice.

Looking ahead, several avenues seem most promising and impactful. First, it

would be valuable to build a tighter theoretical bridge from function-space priors

(and logP (f)) to generalization at the level of individual predictors, extending

beyond existing bounds and clarifying how data, architecture, and algorithm

interact. Second, approximate function-space surrogates that retain the right

invariances—finite-width corrections to Gaussian-process approximations, amortized

evidence estimators, or ensembles interpreted as posteriors over functions—could

make invariance-friendly predictors usable in routine training and model selection.

Third, fragility audits should be integrated into automated evaluation pipelines and

broadened beyond image classification to sequence models, generative modeling,

reinforcement learning, and distribution shift, so that stability becomes a first-class

criterion across modalities. Finally, it would be instructive to connect the norm-

scaling framework to modern deep architectures whose effective p varies across

layers and time, testing whether elbow/threshold phenomena can be detected and

exploited for better diagnostics during training.

In summary, this thesis invites a shift in emphasis: from surrogate measures

that happen to correlate with accuracy in narrow settings, to principled diagnostics

grounded in invariance, stability, and explicit scaling. By moving the conversation

into function space and by auditing what our measures truly respond to, we can

make generalization assessment both more interpretable and more reliable.
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A
Proof of theorems

A.1 Proof for theorem 10

In this section we prove Theorem 10. We first reintroduce the scale invariance

lemma from Arora et al. [2018c], Li and Arora [2019] which is the key source of

intuition about scale-invariant networks.

Lemma 1 (Scale-invariant networks). If ∀c ∈ R+, L(θ) = L(cθ), then

1. ⟨∇θL,θ⟩ = 0

2. ∇θL|θ=θ0
= c∇θL|θ=cθ0

, for any c > 0

Proof. Treat c as a differentiable variable. Clearly the derivative of L w.r.t. c is 0.

1. 0 = ∂L
∂c

= ⟨∇θL,θ⟩

2. Take gradient of the both sides of the equation L(θ) = L(cθ) w.r.t. θ and set

θ = θ0, we immediately arrive at the result.

We give the technical definition of the commonly used training algorithm SGD with

momentum and weight decay (WD) (with respect to the L2 norm of the parameters)

using a convenient form given in Li and Arora [2019], which is equivalent to the

default implementation in Pytorch [Paszke et al., 2017].
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Definition 10 (SGD with momentum and WD). At iteration t, given the current

parameters and learning rate (θt−1, ηt−1), the buffered parameters and learning rate

(θt−2, ηt−2), momentum factor γ, current loss L(θt−1) and WD factor λt−1, update

the parameters θt as the following:

θt − θt−1

ηt−1
= γ

θt−1 − θt−2

ηt−2
−∇θ

(
L (θt−1) + λt−1

2 ∥θt−1∥2
2

)
(A.1)

For the boundary conditions, it is a common practice to set θ−1 = θ0 and η−1 can

be arbitrary.

From the above definition, it is easy to see that we can represent the state of the

algorithm using a four-tuple (θ, η,θ′, η′), which stand for the parameters/learning

rate at the current step and their buffers from the last step, respectively. A gradient

descent step at time t with momentum factor γ and WD factor λ can be seen

as a mapping between two states:

• A GD step with momentum and WD: GDρ
t (θ, η,θ′, η′) =

(
ρθ + η

(
γ θ−θ′

η′ −∇L(θ)
)
, η,θ, η

)
Here with WD factor being λ, ρ is set to be 1− λη. Furthermore, we define some

extra basic mappings that can be composed together to represent the temporal

behavior of the algorithm.

• Scale current parameters θ:

Πc
1 (θ, η,θ′, η′) = (cθ, η,θ′, η′);

• Scale current LR η: Πc
2 (θ, η,θ′, η′) = (θ, cη,θ′, η′);

• Scale buffered parameter θ′:

Πc
3 (θ, η,θ′, η′) = (θ, η, cθ′, η′);

• Scale buffered LR η′: Πc
4 (θ, η,θ′, η′) = (θ, η,θ′, cη′).

We know that in scale-invariant neural nets, two networks f(θ) and f(θ̃) are

equivalent if ∃c > 0 such that θ̃ = cθ; Here we extend the equivalence between

weights to the equivalence between states of algorithms:
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Definition 11 (Equivalent states). Two states (θ, η,θ′, η′) and (θ̃, η̃, θ̃′, η̃′) are

equivalent iff ∃c > 0 such that (θ, η,θ′, η′) =
[
Πc

1 ◦ Πc2
2 ◦ Πc

3 ◦ Πc2
4

] (
θ̃, η̃, θ̃′, η̃′

)
=(

cθ̃, c2η̃, cθ̃′, c2η̃′
)
, which is also noted as (θ, η,θ′, η′) c∼ (θ̃, η̃, θ̃′, η̃′). We call[

Πc
1 ◦ Πc2

2 ◦ Πc
3 ◦ Πc2

4

]
as equivalent scaling for all c > 0.

Here we provide an intuitive explanation of why the equivalent scaling takes the

form above. If we rearrange the first term of the R.H.S. of the GD update, and

assume we are operating in a regime where η′ = η 1, we have

θupdate = (ρ+ γ)θ − η∇L(θ)− γθ′ (A.2)

In order to keep the updated parameters in the same direction, the three terms

in equation A.2 need to have the same scaling. From lemma 1 we know that

when θ is scaled by c, the gradient ∇L(θ) will actually be scaled by 1
c
. Hence

for the second term η∇L(θ) to have the same amount of scaling as the first and

third terms, η has to be scaled by c2.

The following lemma tells us that equivalent scaling commutes with GD update

with momentum and WD, implying that equivalence is preserved under GD updates.

Hence we are free to stack GD updates and insert equivalent scaling anywhere in

a sequence of basic maps without changing the network function.

Lemma 2 (Equivalent scaling commutes with GD). ∀c, ρ > 0 and t ≥ 0,

GDρ
t ◦

[
Πc

1 ◦ Πc2

2 ◦ Πc
3 ◦ Πc2

4

]
=
[
Πc

1 ◦ Πc2

2 ◦ Πc
3 ◦ Πc2

4

]
◦GDρ

t .

In other words, if (θ, η,θ′, η′) c∼ (θ̃, η̃, θ̃′, η̃′) then GDρ
t (θ, η,θ′, η′) c∼ GDρ

t (θ̃, η̃, θ̃′, η̃′).

Proof. For any given state (θ, η,θ′, η′), the L.H.S. of the equation is:
GDρ

t ◦
[
Πc

1 ◦ Πc2

2 ◦ Πc
3 ◦ Πc2

4

]
(θ, η,θ′, η′) = GDρ

t (cθ, c2η, cθ′, c2η′)

=
(
ρcθ + c2η

(
γ
cθ − cθ′

c2η′ −∇L(cθ)
)
, c2η, cθ, c2η

)

=
(
c

(
ρθ + η

(
γ

θ − θ′

η′ −∇L(θ)
))

, c2η, cθ, c2η

)
=
[
Πc

1 ◦ Πc2

2 ◦ Πc
3 ◦ Πc2

4

]
◦GDρ

t (θ, η,θ′, η′)
1This just means in the eyes of the GD algorithm, the buffered LR and the current LR are

the same. It does not exclude the possibility that we can still scale the current LR between GD
updates.
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Now comes the important step: in order to show the equivalence between two

series of parameters with (fixed WD + fixed LR)/(exponentially decreasing WD +

exponentially increasing LR), respectively, we need to rewrite GDρ
t as a composition

of itself with varying WD factor and upscaling LR, conjugated with other scaling

terms that cancel with each other eventually. Here again we choose to work in the

regime where the current and buffered LR are the same in the input of GDρ
t .

Lemma 3 (Conjugated GD updates). For any input with equal current and buffered

LR (θ, η,θ′, η) and ∀α ∈ (Z0, Z1] ∪ [Z2, 1) 2 , we have

GDρ
t (θ, η,θ′, η) =

[
Πα

4 ◦ Πα
2 ◦ Πα

1 ◦GDβ
t ◦ Πα−1

2 ◦ Πα
3 ◦ Πα

4

]
(θ, η,θ′, η)

which can be written in the form of equivalent states:

GDρ
t (θ, η,θ′, η) α∼

[
Πα−1

3 ◦ Πα−1

4 ◦ Πα−1

2 ◦GDβ
t ◦ Πα−1

2 ◦ Πα
3 ◦ Πα

4

]
(θ, η,θ′, η) (A.3)

where

• β = (ρ+γ)
α
− γ

α2

• Z0 = γ
1−λη0+γ

• Z1 = 1+γ−λη0−
√

(1−γ)2−2(1+γ)λη0+λ2η2
0

2

• Z2 = 1+γ−λη0+
√

(1−γ)2−2(1+γ)λη0+λ2η2
0

2
3

2Technically α can be larger than 1, but in that case we will be shrinking the LR between GD
steps which is not what we mainly care about here.

3It’s easy to verify that Z2 is always smaller than 1.
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Proof. We directly verify the equivalence. The R.H.S. is:[
Πα

4 ◦ Πα
2 ◦ Πα

1 ◦GDβ
t ◦ Πα−1

2 ◦ Πα
3 ◦ Πα

4

]
(θ, η,θ′, η)

= [Πα
4 ◦ Πα

2 ◦ Πα
1 ] ◦GDβ

t

(
θ, α−1η, αθ′, αη

)
= [Πα

4 ◦ Πα
2 ◦ Πα

1 ]
(
βθ + α−1η

(
γ

θ − αθ′

αη
−∇L(θ)

)
, α−1η,θ, α−1η

)

=
(
αβθ + η

(
γ

θ − αθ′

αη
−∇L(θ)

)
, η,θ, η

)
= ((ρ+ γ) θ − γθ′ − η∇L(θ), η,θ, η)

=
(
ρθ + η

(
γ

θ − θ′

η
−∇L(θ)

)
, η,θ, η

)
=GDρ

t (θ, η,θ′, η)

The range of α can be easily shown by combining the following two constraints and

assuming remark 4.6 is true:

• α ∈ (0, 1] ;

• (ρ+γ)
α
− γ

α2 ∈ (0, 1]

Now we are ready to prove theorem 10.

Proof of Theorem 10. From the assumption we have the following equivalence

between the boundary conditions of the two series of states:

(θ0, η0,θ−1, η−1) = (θ0, η0,θ0, η0)(
θ̃0, η̃0, θ̃−1, η̃−1

)
=
[
Πα−1

2 ◦ Πα
3 ◦ Πα

4

]
(θ0, η0,θ−1, η−1)

Lemma 2 tells us that equivalent states are still equivalent after both being

transformed by a GD step. Hence we can stack up on both sides of equation

A.3 for a finite number of times. i.e. for ∀t ≥ 0, we have

GDρ
t−1 ◦GDρ

t−2 ◦ · · · ◦GDρ
0 (θ0, η0,θ−1, η−1)

αt

∼
[
Πα−1

3 ◦ Πα−1

4 ◦ Πα−1

2 ◦GDβ
t−1 ◦ Πα−1

2 ◦ Πα
3 ◦ Πα

4

]
◦ · · · ◦

[
Πα−1

3 ◦ Πα−1

4 ◦ Πα−1

2

]
◦GDβ

0

(
θ̃0, η̃0, θ̃−1, η̃−1

)
αt

∼
[
Πα−1

3 ◦ Πα−1

4 ◦ Πα−1

2 ◦GDβ
t−1 ◦ Πα−2

2 ◦GDβ
t−2 ◦ · · · ◦ Πα−2

2 ◦GDβ
0

] (
θ̃0, η̃0, θ̃−1, η̃−1

)
which implies that
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• θt = αtθ̃t

• η̃t = α−2tη̃0 = α−2t−1η0

• λ̃t = 1−β
η̃t

, except for t = 0, in which case λ̃0 = 1−β+ γ

α2 − γ
α

η̃0

We note the special boundary condition for λ̃0 due to the fact that θ̃−1 ̸= θ̃0.

A.2 Minimum-ℓp interpolator with s-sparse ground
truth

For completeness, we first introduce again the mathematical settings and restate

our main theorem. We study p ∈ (1, 2], set q = p
p−1 ∈ [2,∞), and let r ∈ [1, p].

Dimensions n, d ∈ N with d ≥ n. All X ∈ Rn×d have i.i.d. N (0, 1) entries; columns

are X:,j. Noise ξ ∼ N (0, σ2In), independent of X. The signal w⋆ ∈ Rd is s-sparse

with support S ⊂ [d], |S| = s; we write w⋆S for its nonzeros. The response is

Y := Xw⋆ + ξ. The min-ℓp interpolator

ŵp ∈ arg min{∥w∥p : Xw = Y } (p > 1 ensures uniqueness)

is our object of interest. Shorthands:

τ 2
s := ∥w⋆∥2

2 + σ2, Wq := ∥w⋆∥qq =
∑
j∈S
|w⋆j | q.

Remark (Standing assumptions and probability shorthand). We work in the propor-

tional regime

d

n
→ κ ∈ (1,∞), κbulk := lim inf

n→∞

d− s
n
∈ (0,∞),

so d− s = Θ(n) and s = O(n) (we do not require s ≤ n). Unless stated otherwise,

all hidden constants depend only on (p, κbulk) (and on r when relevant), and “w.h.p.”

means probability at least 1− Ce−cn − 2d−γ. When we simplify remainders using

s ≤ n (e.g.,
√
sn+ s⇝

√
sn), the corresponding s > n form is always available and

does not affect any ≍ conclusions in Theorem 12.

On proportionality. The assumption d/n→ κ is only for cleanliness of exposition

and to keep constants tidy; it is not essential to the argument. All places where it
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enters (e.g., the bulk ℓt embedding and the uniform column–norm control) can be

run under the weaker—and often more realistic—conditions

lim inf
n→∞

d− s
n

= κbulk > 0, log d = o(n), s = O(n).

In particular, our proofs and conclusions (same exponents in n, the threshold

r⋆ = 2(p − 1), and the high-probability events) remain valid even in “larger”

aspect-ratio regimes (including d/n → ∞) as long as log d = o(n) and the bulk

density is bounded below. Under these weaker assumptions the hidden constants

are uniform in (n, d, s) and depend only on (p, r, κbulk) (and on a fixed upper bound

for s/n if desired), so no changes to the proofs are needed.

A.2.1 Main theorem

Theorem 12 (Theorem 11 restated). Fix p ∈ (1, 2], q = p
p−1 , r ∈ [1, p], and suppose

lim inf(d− s)/n = κbulk > 0 while d/n→ κ ∈ (1,∞). Then, w.h.p.,

∥ŵp∥r ≍ max
{
t q−1
⋆ n q−1 ∥w⋆∥ q−1

(q−1)r︸ ︷︷ ︸
spike main (S)

, (d− s)1/r
(
t⋆ τs
√
n
) q−1

︸ ︷︷ ︸
bulk (Sc)

, smax{ 1/r, (q−1)/2 }
(
t⋆ τs
√
n
) q−1

︸ ︷︷ ︸
spike remainder

}
.

(A.4)

where the ray scale t⋆ satisfies

t q−1
⋆ ≍ ∥Y ∥2

2
∥X⊤Y ∥qq

≍ τ 2
s n

nqWq + (d− s)mq τ
q
s nq/2 + O

(
τ qs (s nq/2 + s1+q/2)

) w.h.p.

(A.5)

with mt := E|Z|t and Z ∼ N (0, 1). Define the dual-transition scale

n⋆ ≍
(
κbulk

τ qs
Wq

) 2
q−2
. (A.6)

Then, w.h.p., the following asymptotic simplifications hold:

Dual spike-dominated n≫ n⋆.

∥ŵp∥r ≍


τ q+1
s

Wq

n
1
r

− 1
2(p−1) , r ≤ 2(p− 1),

τ 2
s

Wq

∥w⋆∥ q−1
(q−1)r, r > 2(p− 1).

(A.7)
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Dual bulk-dominated n≪ n⋆.

∥ŵp∥r ≍ max
{
κ

1
r

−1
bulk τs n

1
r

− 1
2 , κ−1

bulk τ
2−q
s ∥w⋆∥ q−1

(q−1)r n
q
2 −1 , κ−1

bulk τs s
max{ 1/r, (q−1)/2 } n−1/2

}
.

(A.8)

(Equivalently, using d−s ≍ κbulkn, the third term can be written as τs

d−s s
max{1/r, (q−1)/2}√n.)

Remark (When the third term is absorbed). If r ≤ 2(p − 1) and s ≤ C (d − s)

for an absolute constant C, then the third term in (5.5) is dominated by the first

term (their ratio is ≲ (s/(d− s))1/r). In that case, (5.5) reduces to the two-term

maximum

∥ŵp∥r ≍ max
{
κ

1
r

−1
bulk τs n

1
r

− 1
2 , κ−1

bulk τ
2−q
s ∥w⋆∥ q−1

(q−1)r n
q
2 −1

}
.

For r > 2(p − 1), no uniform absorption holds in general; the third term can

dominate when ∥w⋆∥(q−1)r is small relative to τs.

Remark (Boundary p = 2). At p = 2 (so q = 2) the exponent in (5.3) diverges. In

the proportional-d regime (d/n→ κ) there is no n-driven transition; the relative

sizes of the spike and bulk are constant-level. In the finite-d regime (below) a

concrete n-threshold does exist because (d− s) does not scale with n.

A.2.2 Key lemmas and proof outline

Roadmap. We prove Theorem 11 by (i) reducing the min-ℓp interpolator to a

dual maximization and restricting the dual to the one-dimensional ray λ = tY ,

(ii) decomposing ∥X⊤Y ∥qq into a spike term (j ∈ S) and a bulk term (j /∈ S), and

(iii) converting back to the primal via the KKT map, which raises correlations to

the power (q − 1) and produces the three-term maximum in (5.2). The elbow at

r = 2(p−1) comes from the sign of 1/r − 1/(2(p−1)), i.e., exactly whether the

bulk-type contribution grows or plateaus in the spike-dominated regime. We work

on a single high-probability event E (defined below) on which all concentration

facts hold simultaneously.
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Global event. Let E be the intersection of the column-norm, spectral, and

bulk ℓt events from Lemmas 4, 7, and 8. Then P(E) ≥ 1 − Ce−cn − 2d−γ. All

bounds below hold on E .

Dual problem and KKT

We briefly review Lagrangian duality for convex programs with equality constraints

and then apply it to the minimum-ℓp interpolator.

Primal problem and feasibility. We consider

min
w∈Rd

f(w) subject to Xw = Y, with f(w) := 1
p
∥w∥pp,

where p ∈ (1, 2]. Since X ∈ Rn×d has full row rank n a.s. (for d ≥ n with i.i.d.N (0, 1)

entries), the affine constraint set {w : Xw = Y } is nonempty for every Y ∈ Rn.

The objective f is proper, closed, and strictly convex for p > 1 (indeed uniformly

convex). Therefore, the primal minimizer ŵp exists and is unique. Introduce a

Lagrange multiplier λ ∈ Rn for the equality constraint, and form the Lagrangian

L(w, λ) := f(w) + ⟨λ, Y −Xw⟩.

The dual function is obtained by minimizing the Lagrangian over w:

g(λ) := inf
w∈Rd

{
f(w)− ⟨X⊤λ, w⟩

}
+ ⟨Y, λ⟩ = − f ⋆(X⊤λ) + ⟨Y, λ⟩,

where f ⋆ is the convex conjugate of f :

f ⋆(z) := sup
w∈Rd

{
⟨z, w⟩ − f(w)

}
.

Since f(w) = ∑d
i=1 |wi|p/p is separable, its conjugate is f ⋆(z) = ∑d

i=1 |zi|q/q =

(1/q)∥z∥qq, where q = p/(p− 1) is the Hölder conjugate of p. Indeed, for each coordi-

nate

sup
t∈R
{z t− |t|p/p}

is achieved at t = sgn(z)|z|q−1, with optimal value |z|q/q. Therefore the dual function

is

g(λ) = ⟨Y, λ⟩ − 1
q
∥X⊤λ∥qq.
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Dual problem and strong duality. The dual problem is maxλ∈Rn g(λ), i.e.

max
λ∈Rn

D(λ), D(λ) := ⟨Y, λ⟩ − 1
q
∥X⊤λ∥qq.

This is a concave maximization problem (a smooth concave objective with no

constraints). Strong duality holds in our setting by standard convex duality: the

primal is convex, the constraint is affine, and feasibility holds (Slater’s condition

for equalities reduces to existence of a feasible point). Hence

min
w:Xw=Y

f(w) = max
λ∈Rn

D(λ).

For convex programs with equality constraints, the Karush-Kuhn-Tucker (KKT)

conditions are necessary and sufficient for optimality under strong duality. They

read:

(primal feasibility) Xw = Y, (stationarity) 0 ∈ ∂f(w)−X⊤λ.

Because p > 1, f is differentiable on Rd with gradient

∇f(w) = |w|p−2 ⊙ w = sgn(w)⊙ |w|p−1,

so the subdifferential collapses to the singleton {∇f(w)} and stationarity is

∇f(w) = X⊤λ.

At any primal-dual optimum (ŵp, λ⋆) we therefore have

Xŵp = Y, X⊤λ⋆ = ∇f(ŵp) = |ŵp| p−2 ⊙ ŵp. (A.9)

The conjugate f ⋆ is differentiable with ∇f ⋆(z) = |z|q−2 ⊙ z = sgn(z) ⊙ |z|q−1,

and the gradients are mutual inverses: ∇f ⋆ = (∇f)−1. Applying ∇f ⋆ to both sides

of X⊤λ⋆ = ∇f(ŵp) gives the coordinatewise KKT map:

ŵp,i =
(
∇f ⋆(X⊤λ⋆)

)
i

= sgn
(
(X⊤λ⋆)i

) ∣∣∣(X⊤λ⋆)i
∣∣∣ q−1

. (A.10)

Equivalently, ŵp = ∇f ⋆
(
X⊤λ⋆

)
and X⊤λ⋆ = ∇f(ŵp).
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At optimality, Fenchel–Young gives f(ŵp) + f ⋆(X⊤λ⋆) = ⟨ŵp, X⊤λ⋆⟩. Using

Xŵp = Y and the expressions for f and f ⋆ yields the identities

∥X⊤λ⋆∥qq = ∥ŵp∥pp = ⟨Y, λ⋆⟩. (A.11)

These will be used repeatedly to pass between the primal and dual scales.

The affine set {w : Xw = Y } is a translate of ker(X), and minimizing ∥w∥p
over it finds the point where a scaled ℓp ball first touches this affine subspace. The

outer normal to the ℓp ball at the touching point is ∇f(ŵp) = |ŵp|p−2⊙ ŵp, and the

KKT condition X⊤λ⋆ = ∇f(ŵp) says that this normal lies in the row space of X.

In coordinates, (A.10) shows that each coefficient of ŵp is a (q − 1)-power of the

correlation between the corresponding feature column X:,i and the dual multiplier λ⋆.

Specialization at p = 2. When p = q = 2, ∇f(w) = w and ∇f ⋆(z) = z.

Then (A.9) reads X⊤λ⋆ = ŵ2 and Xŵ2 = Y , which implies XX⊤λ⋆ = Y and

hence λ⋆ = (XX⊤)−1Y . Therefore

ŵ2 = X⊤(XX⊤)−1Y = X+Y,

the minimum-ℓ2 (Moore–Penrose) interpolator. For p ̸= 2 the same structure

persists but the map z 7→ ∇f ⋆(z) = sgn(z)|z|q−1 is nonlinear, which is exactly what

introduces the (q − 1)-power in the subsequent spike/bulk analysis.

Why duality helps here. The dual objective

D(λ) = ⟨Y, λ⟩ − 1
q
∥X⊤λ∥qq

separates the data dependence (linear in Y ) from the feature geometry through

∥X⊤λ∥qq. In our Gaussian design, the d coordinates of X⊤λ split naturally into the s

spikes (indices in S) and the (d− s) bulk, for which we have precise ℓt concentration

(Lemmas 7 and 8). Because D is homogeneous in a simple way along the ray λ = tY ,

D(t) = t∥Y ∥2
2 − tq

q
∥X⊤Y ∥qq,

we will use the ray scale t⋆ (the maximizer of D(tY )) as a canonical scale for λ⋆;

Lemma 9 shows ∥λ⋆∥2 ≍ t⋆∥Y ∥2 and provides blockwise controls onX⊤λ⋆. The KKT

map (A.10) then converts ∥X⊤λ⋆∥ q−1
(q−1)r into ∥ŵp∥r, via ∥|u|⊙(q−1)∥r = ∥u∥ q−1

(q−1)r,

which is the backbone of the unified bound (5.2).
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Concentration for Y and X⊤Y .

Let mt := E|Z| t for Z ∼ N (0, 1).

Lemma 4 (norm of Y ). With Y := Xw⋆ + ξ and τ 2
s := ∥w⋆∥2

2 + σ2, we have

∥Y ∥2
2 = τ 2

s n (1 + o(1)) w.h.p.

More quantitatively, for every t > 0,

Pr
(∣∣∣∥Y ∥2

2 − τ 2
s n
∣∣∣ ≥ 2τ 2

s

√
nt+ 2τ 2

s t
)
≤ e−t.

Proof. For each row i ∈ [n], (Xw⋆)i = ∑d
j=1 w

⋆
jXi,j is N (0, ∥w⋆∥2

2) since the Xi,j

are i.i.d. N (0, 1) and independent in j; the rows are independent. The noise

ξi ∼ N (0, σ2) is independent of X, hence

Y ∼ N (0, τ 2
s In), ∥Y ∥2

2
τ 2
s

∼ χ2
n.

The standard Laurent–Massart inequality for χ2
n variables (see e.g. Ann. Statist.

2000) yields, for all t > 0,

Pr
(
∥Y ∥2

2 − τ 2
s n ≥ 2τ 2

s

√
nt+ 2τ 2

s t
)
≤ e−t, Pr

(
τ 2
s n− ∥Y ∥2

2 ≥ 2τ 2
s

√
nt
)
≤ e−t.

Taking t = cn gives ∥Y ∥2
2 = τ 2

s n(1 + o(1)) with probability at least 1− e−cn.

Lemma 5 (bulk coordinates of X⊤Y ). Conditional on Y , for each j /∈ S,

⟨X:,j, Y ⟩ ∼ N
(
0, ∥Y ∥2

2

)
,

and the variables {⟨X:,j, Y ⟩}j /∈S are i.i.d. given Y . Consequently, with mq := E|Z|q

for Z ∼ N (0, 1),

∑
j /∈S

∣∣∣⟨X:,j, Y ⟩
∣∣∣q = (d− s)mq ∥Y ∥q2

(
1 + o(1)

)
≍ (d− s) τ qs nq/2 w.h.p.

Quantitatively, for any fixed q ≥ 2 and any u ∈ (0, 1),

Pr
∣∣∣∣∣∣ 1
d− s

∑
j /∈S

|⟨X:,j, Y ⟩|q

∥Y ∥q2
−mq

∣∣∣∣∣∣ > u

∣∣∣∣∣∣ Y
 ≤ 2 exp

(
−cq(d− s) min{u2, u}

)
.
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Proof. Fix j /∈ S. The vector X:,j ∼ N (0, In) is independent of (X:,k)k∈S and ξ,

hence independent of Y = Xw⋆ + ξ, which depends only on the columns indexed

by S and on ξ. Conditional on Y , by rotational invariance,

⟨X:,j, Y ⟩
d= ∥Y ∥2 Zj, Zj ∼ N (0, 1),

and independence across j /∈ S follows from the independence of the columns

{X:,j}j /∈S.

Let Wj := |Zj|q −mq. Then Wj are i.i.d. mean-zero and sub-exponential with

∥Wj∥ψ1 ≤ Cq (a standard fact for polynomial functions of a standard Gaussian,

see, e.g., Vershynin’s High-Dimensional Probability). Bernstein’s inequality for

sub-exponential variables gives, for any u > 0,

Pr
∣∣∣∣∣∣ 1
d− s

∑
j /∈S

Wj

∣∣∣∣∣∣ > u
∣∣∣∣ Y

 ≤ 2 exp
(
−cq(d− s) min{u2, u}

)
.

Multiplying back by ∥Y ∥q2 proves the conditional concentration display. Since

(d− s) ≍ n by assumption, taking u→ 0 slowly (e.g. u =
√

(log n)/(d− s)) yields

∑
j /∈S
|⟨X:,j, Y ⟩|q = (d− s)mq∥Y ∥q2 (1 + o(1))

with probability at least 1 − Ce−c(d−s) ≥ 1 − Ce−cn (unconditionally). Finally,

Lemma 4 implies ∥Y ∥q2 ≍ τ qsn
q/2 w.h.p., completing the proof.

Lemma 6 (Signal block with integrated uniform column-norm control). Let X ∈

Rn×d have i.i.d. N (0, 1) entries, S ⊂ [d] with |S| = s, and Y := Xw⋆ + ξ where

ξ ∼ N (0, σ2In) is independent of X. Write τ 2
s := ∥w⋆∥2

2 + σ2 and Wq := ∑
j∈S |w⋆j |q

for q ≥ 2.

(i) Uniform column-norm concentration (over all d columns). There

exists a universal c ∈ (0, 1) such that, for every u > 0,

Pr
(

max
1≤j≤d

∣∣∣∣∣∥X:,j∥2
2

n
− 1

∣∣∣∣∣ > u

)
≤ 2 d exp

(
− c n min{u2, u}

)
. (A.12)

In particular, for any fixed γ > 0,

un :=
√

(1 + γ) log d
c n

∈ (0, 1] for n large, and Pr
(

max
j≤d

∣∣∣∣∣∥X:,j∥2
2

n
− 1

∣∣∣∣∣ > un

)
≤ 2 d−γ.
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(ii) Spike decomposition, explicit definition of ζj, and q-moment bound.

For each j ∈ S, define

ζj :=
〈
X:,j,

∑
k∈S\{j}

w⋆kX:,k + ξ
〉
. (A.13)

Then

⟨X:,j, Y ⟩ = w⋆j ∥X:,j∥2
2 + ζj. (A.14)

Moreover, for each fixed j ∈ S,

E[ζj |X:,j] = 0, Var(ζj |X:,j) =
(
τ 2
s − (w⋆j )2

)
∥X:,j∥2

2, (A.15)

and, conditional on X:,j,

ζj ∼ N
(

0,
(
τ 2
s − (w⋆j )2

)
∥X:,j∥2

2

)
. (A.16)

(We do not assume or use independence between the collection {ζj}j∈S; the proof

below controls their aggregate via operator-norm bounds.) Consequently, with

probability at least 1− 2d−γ − Ce−c
√
ns,

∑
j∈S

∣∣∣⟨X:,j, Y ⟩
∣∣∣q = nqWq (1 + o(1)) + O

(
τ qs
(
s nq/2 + s1+q/2

))
, (A.17)

where the o(1) (as n→∞) and the hidden constants depend only on q (hence on

p). The mixed term Σj∈S|aj|q−1|bj| is absorbed by Young’s inequality into the nqWq

leading term and the Σj∈S|bj|q remainder, with a harmless change in constants.

Proof. Part (i): For a fixed j, Zj := ∥X:,j∥2
2

d= χ2
n. By Laurent–Massart, for all

x ≥ 0,

Pr
(
Zj − n ≥ 2

√
nx+ 2x

)
≤ e−x, Pr

(
n− Zj ≥ 2

√
nx
)
≤ e−x.

A standard choice of x (see derivation below) yields the Bernstein-type bound

Pr
(∣∣∣∣Zjn − 1

∣∣∣∣ > u
)
≤ 2 exp

(
− c n min{u2, u}

)
(∀u > 0), (A.18)

for some universal c ∈ (0, 1). Summing over j = 1, . . . , d gives (A.12). For the

explicit choice un =
√

(1 + γ) log d/(cn) ≤ 1 (for n large),

2d exp
(
−cnu2

n

)
= 2d exp(−(1 + γ) log d) = 2d−γ.
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(Derivation of the Bernstein form): If u ∈ (0, 1], choose x = u2n
8 to get Pr(Zj − n ≥ un) ≤

e− u2n
8 and x = u2n

4 to get Pr(n− Zj ≥ un) ≤ e− u2n
4 . If u ≥ 1, choose x = c0un (e.g.

c0 = 1/16) so that 2
√
nx + 2x ≤ un, hence Pr(Zj − n ≥ un) ≤ e−c0un. Combine

and absorb constants into c.

Part (ii): The decomposition (A.14) is immediate from

Y = w⋆jX:,j +
∑

k∈S\{j}
w⋆kX:,k + ξ,

and independence/rotational invariance: conditional onX:,j , ⟨X:,j, X:,k⟩ ∼ N (0, ∥X:,j∥2
2)

for k ≠ j and ⟨X:,j, ξ⟩ ∼ N (0, σ2∥X:,j∥2
2), all independent. Let aj := w⋆j∥X:,j∥2

2 and

bj := ζj so that ⟨X:,j, Y ⟩ = aj + bj. We show:

∑
j∈S
|aj|q = nqWq(1 + o(1)) and

∑
j∈S
|bj|q ≲ s τ qs n

q/2,

with the stated probability. Conditioned on the event from (i) with u = un = o(1),

max
1≤j≤d

∣∣∣∣∣∥X:,j∥2
2

n
− 1

∣∣∣∣∣ ≤ un,

and by a mean-value bound, ∥X:,j∥2q
2 = nq(1 +O(un)) uniformly in j. Hence

∑
j∈S
|aj|q =

∑
j∈S
|w⋆j |q ∥X:,j∥2q

2 = nq
∑
j∈S
|w⋆j |q (1 +O(un)) = nqWq (1 + o(1)).

For any index set T ⊂ [d], we write X:,T ∈ Rn×|T | for the submatrix formed by the

columns {X:,j : j ∈ T}. When convenient we abbreviate X:,T as XT . For a vector

w ∈ Rd, wT denotes its restriction to T , and T c the complement of T in [d]. Let

G := X⊤
SXS and D := diag(∥X:,j∥2

2)j∈S. Then

b = (bj)j∈S = (G−D)w⋆S +X⊤
S ξ.

We bound ∥b∥2 and then pass to ℓq. Recall b = (G − D)w⋆S + X⊤
S ξ, where G :=

X⊤
SXS ∈ Rs×s and D := diag(∥X:,j∥2

2)j∈S.

Bound on ∥(G−D)w⋆S∥2. We have

∥(G−D)w⋆S∥2 ≤ ∥G−D∥op ∥w⋆∥2 ≤
(
∥G−nIs∥op +∥D−nIs∥op

)
∥w⋆∥2. (A.19)
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Singular-value bound for G−nIs. Let smax(XS) and smin(XS) denote the largest

and smallest singular values of XS. By the standard Gaussian singular-value

concentration (see Vershynin, High-Dimensional Probability, Thm. 4.6.1), for any

t ≥ 0,

P
(
smax(XS) ≤

√
n+
√
s+ t, smin(XS) ≥

√
n−
√
s− t

)
≥ 1− 2e−t2/2. (A.20)

Conditioned on this event,

∥G− nIs∥op = max
{
smax(XS)2 − n, n− smin(XS)2

}
≤
(√

n+
√
s+ t

)2
− n ∨ n−

(√
n−
√
s− t

)2

≤ s+ 2
√
ns+ 2t(

√
n+
√
s) + t2. (A.21)

Choosing t =
√
s in (A.20)–(A.21) yields, with probability at least 1− 2e−s/2,

∥G− nIs∥op ≤ s+ 2
√
ns+ 2

√
s(
√
n+
√
s) + s ≤ 4

√
ns+ 4s. (A.22)

Diagonal bound for D − nIs. By the single-column deviation bound (A.18), for

any u > 0 and any j ∈ S,

Pr
(∣∣∣∣∣∥X:,j∥2

2
n

− 1
∣∣∣∣∣ > u

)
≤ 2 exp

(
− c n min{u2, u}

)
.

Union-bounding this over the s indices j ∈ S and taking

uS :=
√
s

n
, (A.23)

we obtain

P
(

max
j∈S

∣∣∣∣∥X:,j∥2
2

n
− 1

∣∣∣∣ > uS

)
≤

C e
−c s, s ≤ n,

C e−c′√ns, s > n.
(A.24)

hence, on this event,

∥D − nIs∥op = max
j∈S

∣∣∣∥X:,j∥2
2 − n

∣∣∣ ≤ nuS =
√
ns. (A.25)

Combining (A.19), (A.22), and (A.25), we arrive at

∥(G−D)w⋆S∥2 ≤
(
4
√
ns+ 4s+

√
ns
)
∥w⋆∥2 ≤

(
5
√
ns+ 4s

)
∥w⋆∥2, (A.26)

with probability at least 1− 2e−s/2 − Ce−c′√ns.
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Now we bound ∥X⊤
S ξ∥2. Conditionally on XS, the vector X⊤

S ξ is Gaussian with

covariance

Σ := Var
(
X⊤
S ξ
∣∣∣XS

)
= σ2 G.

Write the eigenvalues of G as µ1, . . . , µs ≥ 0. Then

∥X⊤
S ξ∥2

2
d=

s∑
i=1

λi Z
2
i , λi := σ2µi, Zi

i.i.d.∼ N (0, 1).

The weighted χ2 tail of Laurent–Massart (2000, Lemma 1) states that for all x ≥ 0,

P

 s∑
i=1

λiZ
2
i ≥

s∑
i=1

λi + 2
√√√√( s∑

i=1
λ2
i

)
x + 2

(
max
i
λi
)
x
∣∣∣∣ XS

 ≤ e−x. (A.27)

Since ∑i λi = σ2tr(G), ∑i λ
2
i = σ4tr(G2) ≤ σ4s ∥G∥2

op, and maxi λi = σ2∥G∥op,

inserting these into (A.27) and choosing x = s gives, with conditional probability

≥ 1− e−s,

∥X⊤
S ξ∥2

2 ≤ σ2
(

tr(G) + 4s ∥G∥op

)
. (A.28)

We now bound tr(G) and ∥G∥op on the events already used in Step A. First, by

(A.23)–(A.24),

tr(G) =
∑
j∈S
∥X:,j∥2

2 ≤ s n (1 + uS) = s n+ s
√
ns. (A.29)

Second, from (A.20) with t =
√
s,

∥G∥op = smax(XS)2 ≤
(√

n+
√
s+
√
s
)2
≤ n + 4

√
ns + 4s. (A.30)

Plugging (A.29)–(A.30) into (A.28) and taking square roots, we obtain

∥X⊤
S ξ∥2 ≤ σ

√
s n+ s

√
ns + 4s (n+ 4

√
ns+ 4s)

≤ σ
(√

sn +
√
s
√
ns + 2

√
sn + 4s

)
≤ C σ

(√
sn+ s

)
, (A.31)

where in the last step we used
√
s
√
ns = s3/4n1/4 ≤ 1

2(
√
sn+ s).

ℓ2 and ℓq bounds for b. Combining (A.26) and (A.31),

∥b∥2 ≤ ∥(G−D)w⋆S∥2+∥X⊤
S ξ∥2 ≤ C

(√
ns ∥w⋆∥2+s ∥w⋆∥2+σ

√
sn+σs

)
. (A.32)
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In particular, when s ≤ n the s terms are dominated by
√
ns and

∥b∥2 ≤ C τs
√
sn (since τ 2

s = ∥w⋆∥2
2 + σ2). (A.33)

(Refined q-moment bound via decoupling). Introduce i.i.d. “ghost” columns {X ′
:,j}j∈S

independent of (X, ξ) and set

ζ ′
j := ⟨X ′

:,j, uj⟩, uj := X:,S\{j} w
⋆
S\{j} + ξ.

By a standard decoupling inequality for Gaussian chaos of order two (de la Peña

and Giné, Decoupling: From Dependence to Independence, 1999, Thm. 3.5.3), there

exists Cq <∞ (depending only on q) such that for all t > 0,

P
(∑
j∈S
|ζj|q > t

)
≤ Cq P

(∑
j∈S
|ζ ′
j|q > t/Cq

)
.

Conditional on {uj}, the variables {ζ ′
j}j∈S are independent centered Gaussians with

variances ∥uj∥2
2. On the singular-value and column-norm events used above (cf.

(A.20) with t =
√
s and (A.12)), uniformly in j,

∥uj∥2
2 ≤ ∥X:,S∥2

op ∥w⋆∥2
2+∥ξ∥2

2 ≤ C
(
n+4
√
ns+4s

)
∥w⋆∥2

2+Cσ2n ≤ C τ 2
s (n+s).

Hence, conditionally on {uj}, each |ζ ′
j|q is sub-exponential with ψ1-norm ≤ C τ qs (n+

s)q/2. Bernstein’s inequality then yields

∑
j∈S
|ζ ′
j|q ≤ C τ qs

(
s nq/2+s1+q/2

)
with conditional probability at least 1−Ce−cs.

Unconditioning and applying decoupling gives, with probability at least 1− 2d−γ −

Ce−cs, ∑
j∈S
|bj|q =

∑
j∈S
|ζj|q ≤ C τ qs

(
s nq/2 + s1+q/2

)
. (A.34)

In particular, if s ≤ n this simplifies to ∑j∈S |bj|q ≤ C s τ qs n
q/2.

For the cross term, for q ≥ 2 and any a, b ∈ R we have the elementary inequality

∣∣∣|a+ b|q − |a|q
∣∣∣ ≤ Cq

(
|a|q−1|b|+ |b|q

)
≤ Cq

(
|a|q−2b2 + |b|q

)
, (A.35)
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for a constant Cq depending only on q. Summing (A.35) over j ∈ S with aj =

w⋆j∥X:,j∥2
2 and bj = ζj, and applying Hölder,

∑
j∈S

∣∣∣|aj + bj|q − |aj|q
∣∣∣ ≤ Cq

∑
j∈S
|aj|q−1|bj|+ Cq

∑
j∈S
|bj|q

≤ Cq

(∑
j∈S
|aj|q

) q−1
q
(∑
j∈S
|bj|q

) 1
q

+ Cq
∑
j∈S
|bj|q. (A.36)

Set

A :=
∑
j∈S
|aj|q, B :=

∑
j∈S
|bj|q.

Apply Young’s inequality with conjugate exponents r = q
q−1 and s = q: for any

ε > 0,

A
q−1

q B
1
q ≤ ε

r
A + ε−(q−1)

s
B = q − 1

q
εA + 1

q
ε−(q−1) B. (A.37)

With A = nqWq(1 +O(un)) and the bound B ≤ C τ qs (s nq/2 + s1+q/2) from (A.34),

choosing a fixed ε ∈ (0, 1) (e.g. ε = 1
2) absorbs the mixed term into the leading A

and the B-remainder (with a harmless change of constants). Consequently,

∑
j∈S

∣∣∣|aj + bj|q − |aj|q
∣∣∣ = O

(
τ qs
(
s nq/2 + s1+q/2

))
,

which yields (A.17). When s ≤ n the remainder simplifies to O
(
s τ qs n

q/2
)
.

Combining Lemmas 5–6 yields the decomposition

∥X⊤Y ∥qq = nqWq (1+o(1)) + (d−s)mq τ
q
s n

q/2 (1+o(1)) +O
(
τ qs
(
s nq/2+s1+q/2

))
w.h.p.

(A.38)

Bulk ℓq-embedding and Gaussian ℓt relations.

Lemma 7 (uniform ℓq control on the bulk operator). Let q ∈ [2,∞) and assume

κbulk := lim infn→∞
d−s
n

> 0. There exist constants 0 < cq ≤ Cq < ∞, depending

only on (q, κbulk), such that, with probability at least 1− Ce−cn, simultaneously for

all λ ∈ Rn,

cq (d− s) ∥λ∥q2 ≤
∑
j /∈S

∣∣∣⟨X:,j, λ⟩
∣∣∣q ≤ Cq (d− s) ∥λ∥q2. (A.39)
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(Here we absorb the Gaussian absolute moment mq = E|Z|q into the constants cq, Cq;

in (A.40) we keep mt explicit.) Moreover, for every t ∈ [1, q], there exist constants

0 < ct ≤ Ct < ∞, depending only on (t, κbulk), such that, w.h.p., uniformly in

λ ∈ Rn,

c
1/t
t (d− s)1/tm

1/t
t ∥λ∥2 ≤

∥∥∥( |⟨X:,j, λ⟩|
)
j /∈S

∥∥∥
t
≤ C

1/t
t (d− s)1/tm

1/t
t ∥λ∥2, (A.40)

where mt := E|Z|t for Z ∼ N (0, 1).

Proof. Fix λ ∈ Rn, and if λ ̸= 0 write u := λ/∥λ∥2 ∈ Sn−1. By homogeneity,

∑
j /∈S
| ⟨X:,j|λ⟩ |q = ∥λ∥q2

∑
j /∈S
| ⟨X:,j|u⟩ |q, (A.41)

and similarly for any t ∈ [1, q],

∥∥∥(| ⟨X:,j|λ⟩ |)j /∈S
∥∥∥
t

= ∥λ∥2

(∑
j /∈S
| ⟨X:,j|u⟩ |t

)1/t
. (A.42)

Thus it suffices to prove the bounds for unit u.

Let T := Sc and m := |T | = d− s. Fix u ∈ Sn−1 and t ∈ [1, q]. Define

Y
(t)
j (u) :=

∣∣∣⟨X:,j, u⟩
∣∣∣ t, j ∈ T.

Since the columns {X:,j}j∈T are i.i.d. N (0, In) and independent of u, the random

variables {Y (t)
j (u)}j∈T are i.i.d.

Definition 12 (Orlicz ψν norm and sub-Weibull class). For ν ∈ (0, 2] and a real

random variable Z, the Orlicz norm

∥Z∥ψν := inf
{
K > 0 : E exp

( |Z|ν
Kν

)
≤ 2

}
.

If ∥Z∥ψν < ∞, we say Z is sub-Weibull of order ν. Special cases: ν = 2 (sub-

Gaussian) and ν = 1 (sub-Exponential). Two basic properties we use are

P(|Z| > x) ≤ 2 exp
(
− c (x/∥Z∥ψν )ν

)
(∀x ≥ 0), (A.43)

∥Z − EZ∥ψν ≤ 2 ∥Z∥ψν . (A.44)
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Definition 13 (Gaussian absolute moment). For t > 0, let Z ∼ N (0, 1) and define

mt := E|Z|t = 2t/2 Γ
(
t+1

2

)
√
π

.

Classification of Y (t)
j (u) in ψν (with explicit mgf computation). Since ⟨X:,j, u⟩ ∼

N (0, 1), write Z ∼ N (0, 1) and set W := |Z|t. For any K > 0,
(
W

K

)2/t
=
( |Z| t
K

)2/t
= |Z|

2

K2/t .

Let

θ := 1
K2/t .

Then

E exp
((
W/K

)2/t
)

= E exp
(
θ Z2

)
.

Compute this expectation explicitly: using the standard normal density φ(z) =

(2π)−1/2e−z2/2,

E
[
eθZ

2] =
∫
R
eθz

2
φ(z) dz = 1√

2π

∫
R
eθz

2
e−z2/2 dz

= 1√
2π

∫
R
e−( 1

2 −θ) z2
dz = 1√

2π
·
√

π
1
2 − θ

= 1√
1− 2θ

, for θ < 1
2 .

(A.45)

Equivalently, since Z2 ∼ χ2
1, the mgf of χ2

1 is (1−2θ)−1/2 for θ < 1/2, which matches

(A.45).

We now choose K so that θ < 1/2 and the expectation is uniformly bounded by

a constant ≤ 2. Take

Kt := (4t)t/2 =⇒ θ = 1
K

2/t
t

= 1
4t <

1
2 (t ≥ 1). (A.46)

Then, by (A.45),

E exp
((
W/Kt

)2/t
)

= 1√
1− 2

K
2/t
t

= 1√
1− 1

2t

≤ 1√
1− 1

2

=
√

2 < 2, (A.47)

where we used t ∈ [1, q] (hence t ≥ 1). By the definition of the Orlicz norm,

∥ |Z|t ∥ψ2/t
≤ Kt = (4t)t/2. (A.48)
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Centering preserves the class up to a factor 2 (by (A.44)), hence

∥ |Z|t −mt ∥ψ2/t
≤ 2Kt = 2(4t)t/2. (A.49)

Finally, define

ν(t) := min{1, 2/t}. (A.50)

Since 2/t ≥ 1 for t ≤ 2 and 2/t < 1 for t > 2, combining (A.49) with (A.50) yields

the uniform (in u) classification

∥Y (t)
j (u)−mt ∥ψν(t) ≤ K ′

t with K ′
t := 2(4t)t/2. (A.51)

This bound is uniform in u because ⟨X:,j, u⟩
d= N (0, 1) for every fixed u ∈ Sn−1.

Empirical-mean concentration at fixed u. From (A.51) and independence across

j ∈ T , a Bernstein-type inequality for sums of i.i.d. sub-Weibull(ν) variables (e.g.

Theorem 3.1 in Kuchibhotla–Basu, 2018) yields, for any ε > 0,

P

∣∣∣∣∣∣ 1
m

∑
j∈T

(
Y

(t)
j (u)−mt

)∣∣∣∣∣∣ > ε

 ≤ 2 exp
{
−cν(t) m min

(
ε2

K ′2
t

,
(
ε

K ′
t

)ν(t)
)}

.

(A.52)

Taking ε = δ mt with δ ∈ (0, 1), and absorbing the fixed ratio mt/K
′
t (which depends

only on t) into the constant, we obtain

P
(∣∣∣∣ 1
m

∑
j∈T

Y
(t)
j (u)−mt

∣∣∣∣ > δmt

)
≤ 2 exp

(
− ctm min{δ2, δν(t)}

)
, (A.53)

where ct > 0 depends only on t (hence only on p). In the sub-Exponential range

t ∈ [1, 2], ν(t) = 1 and (A.53) simplifies to

P
(∣∣∣∣ 1
m

∑
j∈T

Y
(t)
j (u)−mt

∣∣∣∣ > δmt

)
≤ 2 exp

(
− ctm min{δ2, δ}

)
. (A.54)

Finally, note that

EY (t)
j (u) = mt, (A.55)

by Definition 13, completing Step 1.

Now we can construct a net on the sphere and a uniform bound on that net.

Let ε ∈ (0, 1/8] be a fixed absolute constant (to be chosen below). There exists an

ε-net Nε ⊂ Sn−1 with

|Nε| ≤
(

1 + 2
ε

)n
≤ Cn

ε . (A.56)
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Applying (A.53) with δ = δt ∈ (0, 1/4] (a small absolute constant depending only

on t) and union-bounding over Nε yields

P

∃ v ∈ Nε :
∣∣∣∣ 1
m

∑
j∈T

Y
(t)
j (v)−mt

∣∣∣∣ > δtmt

 ≤ 2 |Nε| exp
(
− ctm min{δ2

t , δt}
)

≤ 2 exp
(
n logCε − c′

tm
)
. (A.57)

Because m ≥ κbulkn and κbulk > 0, by taking δt fixed (e.g. δt = 1/4) and ε fixed

(e.g. ε = 1/8), the right-hand side of (A.57) is ≤ Ce−cn. Therefore, with probability

at least 1− Ce−cn, simultaneously for all v ∈ Nε,

(1− δt)mt ≤
1
m

∑
j∈T
| ⟨X:,j|v⟩ |t ≤ (1 + δt)mt. (A.58)

We are ready to extend from the net to the whole sphere. Fix arbitrary u ∈ Sn−1

and pick v ∈ Nε with ∥u− v∥2 ≤ ε. For any a, b ∈ R and any t ≥ 1, the elementary

inequalities

|a+ b|t ≤ 2t−1
(
|a|t + |b|t

)
, |a|t ≤ 2t−1

(
|a+ b|t + |b|t

)
(A.59)

hold. Applying (A.59) with a = ⟨X:,j|v⟩ and b = ⟨X:,j|u− v⟩, we get

| ⟨X:,j|u⟩ |t ≤ 2t−1
(
| ⟨X:,j|v⟩ |t + | ⟨X:,j|u− v⟩ |t

)
, (A.60)

| ⟨X:,j|u⟩ |t ≥ 21−t | ⟨X:,j|v⟩ |t − | ⟨X:,j|u− v⟩ |t. (A.61)

Average (A.60) and (A.61) over j ∈ T and divide by m to obtain

1
m

∑
j∈T
| ⟨X:,j|u⟩ |t ≤ 2t−1

 1
m

∑
j∈T
| ⟨X:,j|v⟩ |t + 1

m

∑
j∈T
| ⟨X:,j|u− v⟩ |t

 , (A.62)

1
m

∑
j∈T
| ⟨X:,j|u⟩ |t ≥ 21−t 1

m

∑
j∈T
| ⟨X:,j|v⟩ |t −

1
m

∑
j∈T
| ⟨X:,j|u− v⟩ |t. (A.63)

For any w ∈ Rn,

1
m

∑
j∈T
| ⟨X:,j|w⟩ |t = ∥w∥t2 ·

1
m

∑
j∈T
| ⟨X:,j|ŵ⟩ |t, ŵ := w

∥w∥2
(if w ̸= 0). (A.64)

Define the functional and its extremal values

A(u) := 1
m

∑
j∈T
| ⟨X:,j|u⟩ |t, S := sup

u∈Sn−1
A(u), I := inf

u∈Sn−1
A(u).
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By (A.64) and ∥u− v∥2 ≤ ε,
1
m

∑
j∈T
| ⟨X:,j|u− v⟩ |t = ∥u− v∥t2 ·

1
m

∑
j∈T
|
〈
X:,j

∣∣∣û− v〉 |t ≤ εt S,

where we used the definition of S in the last inequality. On the event (A.58) (from

Step 2), A(v) ∈ [(1 − δt)mt, (1 + δt)mt] for every v ∈ Nε. Plugging these into

(A.62)-(A.63) yields

A(u) ≤ 2t−1
(
A(v) + εtS

)
,

A(u) ≥ 21−tA(v)− εtS.

Taking the supremum over u ∈ Sn−1 in the upper bound:

S ≤ 2t−1
(
(1 + δt)mt + εtS

)
=⇒ S ≤ 2t−1

1− 2t−1εt
(1 + δt)mt.

Taking the infimum over u ∈ Sn−1 in the lower bound:

I ≥ 21−t(1− δt)mt − εtS.

Choose fixed δt ≤ 1
4 and ε ≤ 1

8 ; then

2t−1εt = (2ε)t
2 ≤ (1/4)t

2 ≤ 1
8 ,

so 1− 2t−1εt ≥ 7/8 and thus

S ≤ 2t−1

7/8 (1 + δt)mt ≤ Ctmt,

for a constant Ct < ∞ depending only on t. Substituting this bound for S back

into the inequality for I gives

I ≥ 21−t(1− δt)mt − εtCtmt ≥ ctmt,

for some ct > 0 (depending only on t). Therefore, with probability at least 1−Ce−cn,

ctmt ≤
1
m

∑
j∈T
| ⟨X:,j|u⟩ |t ≤ Ctmt simultaneously for all u ∈ Sn−1. (A.65)

Multiplying (A.65) by m = d− s and using (A.41) with t = q yields

cq (d− s) ∥λ∥q2 ≤
∑
j /∈S
| ⟨X:,j|λ⟩ |q ≤ Cq (d− s) ∥λ∥q2,

which is (A.39). Likewise, combining (A.65) with (A.42) gives

c
1/t
t (d− s)1/tm

1/t
t ∥λ∥2 ≤

∥∥∥(| ⟨X:,j|λ⟩ |)j /∈S
∥∥∥
t
≤ C

1/t
t (d− s)1/tm

1/t
t ∥λ∥2,

which is (A.40).
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Spike ℓt control for X⊤Y

Lemma 8 (spike ℓt control for X⊤Y ). Fix any t ∈ [1, q] and γ > 0. With probability

at least 1− 2d−γ − Ce−cs,∥∥∥∥( |⟨X:,j, Y ⟩|
)
j∈S

∥∥∥∥
t

= n ∥w⋆∥t
(
1+O(un)

)
± C τs

(√
n smax{1/t, 1/2} + s 1+ (1/t−1/2)+

)
,

(A.66)

where un :=
√

(1 + γ) log d/(c n) = o(1) and (x)+ := max{x, 0}. In particular, if

s ≤ n then the error simplifies to∥∥∥∥( |⟨X:,j, Y ⟩|
)
j∈S

∥∥∥∥
t

= n ∥w⋆∥t
(
1 +O(un)

)
± C τs

√
n smax{1/t, 1/2}. (A.67)

All constants may depend on t (hence on p) but not on (n, d, s).

Proof. For each j ∈ S,

⟨X:,j, Y ⟩ = w⋆j ∥X:,j∥2
2 + ζj, ζj :=

〈
X:,j,

∑
k∈S\{j}

w⋆kX:,k + ξ
〉
. (A.68)

Conditional on X:,j,

E[ζj | X:,j] = 0, Var(ζj | X:,j) = (τ 2
s − (w⋆j )2) ∥X:,j∥2

2, (A.69)

and ζj | X:,j ∼ N (0, (τ 2
s − (w⋆j )2)∥X:,j∥2

2) by independence and rotational invariance.

Define

aj := w⋆j∥X:,j∥2
2, bj := ζj, a := (aj)j∈S, b := (bj)j∈S.

By the uniform column-norm bound (A.12) with u = un = o(1), we have

max
1≤j≤d

∣∣∣∣∥X:,j∥2
2

n
− 1

∣∣∣∣ ≤ un with probability at least 1− 2d−γ. (A.70)

On this event,
∥∥∥(|aj|)j∈S∥∥∥

ℓt
=
(∑
j∈S
|w⋆j |t ∥X:,j∥2t

2

)1/t
= n

(∑
j∈S
|w⋆j |t (1 +O(un))t

)1/t

= n ∥w⋆∥t
(
1 +O(un)

)
. (A.71)

Let XS be the n× s submatrix with columns {X:,j}j∈S, and set

G := X⊤
SXS, D := diag

(
∥X:,j∥2

2

)
j∈S

.
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From (A.68), in vector form

b = (G−D)w⋆S + X⊤
S ξ. (A.72)

We bound the two terms separately.

(i) Control of (G − D)w⋆S. By the triangle inequality and operator norm

submultiplicativity,

∥(G−D)w⋆S∥2 ≤ ∥G−D∥op ∥w⋆∥2 ≤
(
∥G−nIs∥op +∥D−nIs∥op

)
∥w⋆∥2. (A.73)

Gaussian singular-value concentration (Vershynin, HDP, Thm. 4.6.1) gives, for any

t ≥ 0,

P
(
smax(XS) ≤

√
n+
√
s+ t, smin(XS) ≥

√
n−
√
s− t

)
≥ 1− 2e−t2/2. (A.74)

On this event,

∥G− nIs∥op = max
{
smax(XS)2 − n, n− smin(XS)2

}
≤ (
√
n+
√
s+ t)2 − n ∨ n− (

√
n−
√
s− t)2

≤ s+ 2
√
ns+ 2t(

√
n+
√
s) + t2. (A.75)

Taking t =
√
s yields, with probability ≥ 1− 2e−s/2,

∥G− nIs∥op ≤ 4
√
ns+ 4s. (A.76)

By the S-only column-norm event (A.24) (with uS =
√
s/n),

∥D − nIs∥op = max
j∈S

∣∣∣∥X:,j∥2
2 − n

∣∣∣ ≤ nuS =
√
ns.

Combining this with (A.73) and (A.76) yields

∥(G−D)w⋆S∥2 ≤ C (
√
ns+s) ∥w⋆∥2 with probability at least 1−2e−s/2−Ce−c

√
ns.

(A.77)

(ii) Control of X⊤
S ξ. Conditionally on XS, one has X⊤

S ξ ∼ N (0, σ2G). Writing

{µi}si=1 for the eigenvalues of G and λi := σ2µi, Laurent–Massart’s weighted χ2 tail

(2000, Lemma 1) yields, for all x ≥ 0,

P

 s∑
i=1

λiZ
2
i ≥

∑
i

λi + 2
√√√√(∑

i

λ2
i

)
x+ 2(max

i
λi) x

∣∣∣∣ XS

 ≤ e−x. (A.78)
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Using ∑
i λi = σ2tr(G), ∑i λ

2
i ≤ σ4s ∥G∥2

op, and maxi λi = σ2∥G∥op, and taking

x = s gives, with conditional probability ≥ 1− e−s,

∥X⊤
S ξ∥2

2 ≤ σ2
(

tr(G) + 4s ∥G∥op

)
. (A.79)

On the event (A.74) with t =
√
s and (A.70),

tr(G) =
∑
j∈S
∥X:,j∥2

2 ≤ sn(1+un) = sn+o(sn), ∥G∥op = smax(XS)2 ≤ n+4
√
ns+4s.

(A.80)

Plugging (A.80) into (A.79) and taking square roots,

∥X⊤
S ξ∥2 ≤ C σ

(√
sn+ s

)
with prob. ≥ 1− 2e−s/2 − e−s. (A.81)

Combining (A.77), (A.81), and (A.72),

∥b∥2 ≤ C τs (
√
sn+ s) with prob. ≥ 1− 2d−γ − Ce−cs. (A.82)

For t ∈ [1, 2], the norm monotonicity in Rs gives

∥b∥ℓt ≤ s 1/t−1/2 ∥b∥2. (A.83)

For t ≥ 2, ∥b∥ℓt ≤ ∥b∥2. Hence, for all t ∈ [1, q],

∥b∥ℓt ≤ s (1/t−1/2)+ ∥b∥2 ≤ C τs

(√
n smax{1/t, 1/2} + s 1+(1/t−1/2)+

)
, (A.84)

where we used (A.82). In particular, if s ≤ n then s 1+(1/t−1/2)+ ≤
√
n smax{1/t, 1/2}

and (A.84) reduces to

∥b∥ℓt ≤ C τs
√
n smax{1/t, 1/2}. (A.85)

Finally, by the triangle inequality,

∥∥∥(|aj + bj|)j∈S
∥∥∥
ℓt
≤ ∥(|aj|)j∈S∥ℓt + ∥(|bj|)j∈S∥ℓt , (A.86)∥∥∥(|aj + bj|)j∈S

∥∥∥
ℓt
≥ ∥(|aj|)j∈S∥ℓt − ∥(|bj|)j∈S∥ℓt , (A.87)

and combining with (A.71) and (A.84) (or (A.85) when s ≤ n) yields (A.66)

(and (A.67)).
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Ray controls: minimal comparison and blockwise bounds

For the ray λ = tY we have the one-dimensional dual objective

D(t) := ⟨Y, tY ⟩ − 1
q
∥X⊤(tY )∥qq = t ∥Y ∥2

2 −
tq

q
∥X⊤Y ∥qq. (A.88)

Since D′′(t) = − (q−1) tq−2 ∥X⊤Y ∥qq < 0 for all t > 0, D is strictly concave on [0,∞)

and admits a unique maximizer t⋆ given by the first-order condition D′(t⋆) = 0:

t q−1
⋆ = ∥Y ∥2

2
∥X⊤Y ∥qq

. (A.89)

At this maximizer,

D(t⋆) = t⋆∥Y ∥2
2−

tq⋆
q
∥X⊤Y ∥qq =

(
1− 1

q

)
tq⋆∥X⊤Y ∥qq =

(
1− 1

q

)
∥X⊤(t⋆Y )∥qq. (A.90)

Lemma 9 (Ray controls). Let p ∈ (1, 2], q = p
p−1 ∈ [2,∞), and define t⋆ by (A.89).

With probability at least 1−Ce−c(d−s)−Ce−c
√
ns (constants depend only on (q, κbulk)),

the following hold simultaneously.

(One-sided value comparison).

D(λ⋆) ≥ D(t⋆) and ∥X⊤λ⋆∥qq ≥ ∥X⊤(t⋆Y )∥qq. (A.91)

(Dual-norm scale). There exist 0 < c1 ≤ C1 <∞ depending only on (q, κbulk) such

that

c1 t⋆ ∥Y ∥2 ≤ ∥λ⋆∥2 ≤ C1 t⋆ ∥Y ∥2. (A.92)

(Bulk block at level t ∈ [1, q]). For each t ∈ [1, q] there exist 0 < ct ≤ Ct < ∞

(depending only on (t, κbulk)) such that

c
1/t
t (d− s)1/tm

1/t
t t⋆∥Y ∥2 ≤

∥∥∥∥(|⟨X:,j, λ
⋆⟩|
)
j /∈S

∥∥∥∥
t
≤ C

1/t
t (d− s)1/tm

1/t
t t⋆∥Y ∥2,

(A.93)

where mt = E|Z|t for Z ∼ N (0, 1).

(Spike block: two-sided t-level perturbation). For every t ∈ [1, q],
∥∥∥∥(|⟨X:,j, λ

⋆⟩|
)
j∈S

∥∥∥∥
t

= t⋆

∥∥∥∥(|⟨X:,j, Y ⟩|
)
j∈S

∥∥∥∥
t
± C2 t⋆ ∥Y ∥2 s

(1/t−1/2)+ (
√
n+
√
s),

(A.94)
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for a constant C2 = C2(q, κbulk). In particular, if s ≤ n then
∥∥∥∥(|⟨X:,j, λ

⋆⟩|
)
j∈S

∥∥∥∥
t

= t⋆

∥∥∥∥(|⟨X:,j, Y ⟩|
)
j∈S

∥∥∥∥
t
± C3 t⋆ τs

√
n smax{1/t, 1/2}. (A.95)

In the last display we used ∥Y ∥2 = τs
√
n (1 + o(1)) from Lemma 4.

Proof. We work on the intersection of the high-probability events supplied by

Lemma 7 (both (A.39) and (A.40)), Lemma 5, and the singular-value bound (A.20);

this intersection has probability at least 1− Ce−cn.

(One-sided value comparison (A.91)). By optimality of λ⋆ and the definition of t⋆,

D(λ⋆) ≥ D(t⋆).

Using the Fenchel-Young identity at the optimum (see (A.11)) and (A.90),

D(λ⋆) =
(

1− 1
q

)
∥X⊤λ⋆∥qq, D(t⋆) =

(
1− 1

q

)
∥X⊤(t⋆Y )∥qq,

hence (A.91).

(Dual-norm scale (A.92)). Lower bound. From D(λ⋆) ≥ D(t⋆) and (A.90),

D(λ⋆) ≥
(

1− 1
q

)
t⋆∥Y ∥2

2.

Since D(λ⋆) ≤ ⟨Y, λ⋆⟩ ≤ ∥Y ∥2∥λ⋆∥2, we get

∥λ⋆∥2 ≥
(

1− 1
q

)
t⋆ ∥Y ∥2.

Upper bound. Let

S(λ) :=
∑
j∈S
|⟨X:,j, λ⟩|q, B(λ) :=

∑
j /∈S
|⟨X:,j, λ⟩|q.

From (A.11),

D(λ⋆) =
(

1− 1
q

)(
S(λ⋆) +B(λ⋆)

)
.

By Lemma 7 (left inequality in (A.39)),

B(λ⋆) ≥ cq (d− s) ∥λ⋆∥q2.
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Combining with D(λ⋆) ≤ ∥Y ∥2∥λ⋆∥2 gives(
1− 1

q

)
cq(d− s) ∥λ⋆∥q−1

2 ≤ ∥Y ∥2. (A.96)

Next, Lemma 5 yields
∑
j /∈S
|⟨X:,j, Y ⟩|q = (d− s)mq ∥Y ∥q2 (1 + o(1)),

so ∥X⊤Y ∥qq ≥ c (d− s) ∥Y ∥q2. From (A.89),
(
t⋆∥Y ∥2

)q−1
= ∥Y ∥ q+1

2
∥X⊤Y ∥qq

≤ 1
c
· ∥Y ∥2

(d− s) .

Comparing with (A.96) gives ∥λ⋆∥q−1
2 ≤ C (t⋆∥Y ∥2)q−1 and hence ∥λ⋆∥2 ≤ C1 t⋆ ∥Y ∥2.

(Bulk block (A.93)). Apply Lemma 7 at level t (two-sided inequality (A.40)) with

λ = λ⋆:

c
1/t
t (d− s)1/tm

1/t
t ∥λ⋆∥2 ≤

∥∥∥∥(|⟨X:,j, λ
⋆⟩|
)
j /∈S

∥∥∥∥
t
≤ C

1/t
t (d− s)1/tm

1/t
t ∥λ⋆∥2.

Substitute ∥λ⋆∥2 ≍ t⋆∥Y ∥2 from (A.92).

(Spike block (A.94)-(A.95)). Set h := λ⋆ − t⋆Y . Then

X⊤
:,Sλ

⋆ = t⋆X
⊤
:,SY + X⊤

:,Sh.

For any t ≥ 1, the triangle inequality gives∥∥∥∥(|⟨X:,j, λ
⋆⟩|)j∈S

∥∥∥∥
t
≤ t⋆

∥∥∥∥(|⟨X:,j, Y ⟩|)j∈S
∥∥∥∥
t

+ ∥X⊤
:,Sh∥ℓt ,

and the analogous lower bound with a minus sign. By norm monotonicity in Rs

and operator norm submultiplicativity,

∥X⊤
:,Sh∥ℓt ≤ s(1/t−1/2)+ ∥X⊤

:,Sh∥2 ≤ s(1/t−1/2)+ smax(X:,S) ∥h∥2.

From (A.20) with t =
√
s, smax(X:,S) ≤ C(

√
n+
√
s) w.h.p., and from (A.92),

∥h∥2 = ∥λ⋆ − t⋆Y ∥2 ≤ ∥λ⋆∥2 + t⋆∥Y ∥2 ≤ (C1 + 1) t⋆ ∥Y ∥2.

Putting these together yields (A.94). If s ≤ n, Lemma 4 gives ∥Y ∥2 = τs
√
n(1+o(1))

and

s(1/t−1/2)+(
√
n+
√
s) ≤ 2

√
n smax{1/t,1/2},

which implies (A.95).
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A.2.3 Proof of Theorem 12

With these lemmas in place, we are ready to prove Theorem 12.

Proof of Theorem 12. We work on the intersection of the high-probability events

provided by Lemmas 4, 5, 6, 7, 8, and 9; this event has probability at least

1−Ce−c(d−s)−Ce−c
√
ns− 2d−γ , consistent with Remark A.2. All constants implicit

in ≍ depend only on (q, κbulk).

Along the ray λ = tY , the one-dimensional dual objective

D(t) = t ∥Y ∥2
2 −

tq

q
∥X⊤Y ∥qq

is strictly concave with unique maximizer given by the first-order condition (see (A.89))

t q−1
⋆ = ∥Y ∥2

2
∥X⊤Y ∥qq

. (A.97)

By Lemma 4, ∥Y ∥2
2 = τ 2

s n(1 + o(1)), and by the decomposition (A.38),

∥X⊤Y ∥qq = nqWq (1 + o(1)) + (d− s)mq τ
q
s n

q/2 (1 + o(1)) + O
(
s τ qs n

q/2
)
.

Substituting into (A.97) yields

t q−1
⋆ ≍ τ 2

s n

nqWq +
(
(d− s)mq +O(s)

)
τ qsnq/2

w.h.p. (A.98)

By strong duality and Fenchel-Young (see (A.11)),

sup
λ
D(λ) =

(
1− 1

q

)
∥X⊤λ⋆∥qq =

(
1− 1

q

)
∥ŵp∥pp. (A.99)

Evaluating D on the ray at t⋆ and using D(λ⋆) ≥ D(t⋆) gives

∥ŵp∥pp = ∥X⊤λ⋆∥qq ≥ ∥X⊤(t⋆Y )∥qq = tq⋆ ∥X⊤Y ∥qq = ∥Y ∥
2q

q−1
2

∥X⊤Y ∥
q

q−1
q

. (A.100)

Moreover, by Cauchy–Schwarz and (A.92),

∥X⊤λ⋆∥qq = ⟨Y, λ⋆⟩ ≤ ∥Y ∥2 ∥λ⋆∥2 ≲ t⋆ ∥Y ∥2
2 = t q⋆ ∥X⊤Y ∥qq.

Combining with (A.100) we obtain the two-sided scale

∥ŵp∥pp = ∥X⊤λ⋆∥qq ≍ t q⋆ ∥X⊤Y ∥qq.
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Using the coordinatewise KKT map (A.10),

ŵp = ∇f ⋆(X⊤λ⋆) = sgn(X⊤λ⋆)⊙ |X⊤λ⋆| q−1.

Hence, for any r ∈ [1, p],

∥ŵp∥r = ∥X⊤λ⋆∥ q−1
(q−1)r. (A.101)

Split the (q − 1)r-norm over the spike block S and the bulk block Sc and note that

∥u∥tt = ∥uS∥tt + ∥uSc∥tt implies ∥u∥t ≍ max{∥uS∥t, ∥uSc∥t}:

∥ŵp∥r ≍ max
{
∥(|⟨X:,j, λ

⋆⟩|)j∈S∥ q−1
(q−1)r, ∥(|⟨X:,j, λ

⋆⟩|)j /∈S∥ q−1
(q−1)r

}
. (A.102)

(We used max{a, b} ≤ (at + bt)1/t ≤ 21/t max{a, b} for t ≥ 1.)

Set t := (q − 1)r ≤ q. By the spike-ray perturbation from Lemma 9 (see (A.95)

when s ≤ n),

∥∥∥( |⟨X:,j, λ
⋆⟩|
)
j∈S

∥∥∥
ℓt

= t⋆
∥∥∥( |⟨X:,j, Y ⟩|

)
j∈S

∥∥∥
ℓt
± C t⋆ τs

√
n smax{1/t, 1/2}. (A.103)

(If s > n, use the general form (A.94); the conclusion below is unchanged up to

constants since (
√
n +
√
s) s(1/t−1/2)+ ≤ 2

√
n smax{1/t,1/2} + s 1+(1/t−1/2)+ , which is

captured by the final “spike remainder” term.) By Lemma 8 at level t,

∥∥∥( |⟨X:,j, Y ⟩|
)
j∈S

∥∥∥
ℓt

= n ∥w⋆∥t (1 + o(1)) ± C τs
√
n smax{1/t, 1/2}. (A.104)

Combining (A.103)-(A.104) and using (a + b)q−1 ≤ 2q−2(aq−1 + bq−1) for a, b ≥ 0,

we obtain the following uniform two-sided bounds (recall t = (q − 1)r ≤ q):

∥∥∥(|⟨X:,j, λ
⋆⟩|
)
j∈S

∥∥∥ q−1

ℓt
≤ C

{
t q−1
⋆ n q−1 ∥w⋆∥ q−1

t + (t⋆τs
√
n) q−1 s (q−1) max{1/t, 1/2}

}
,

(A.105)∥∥∥(|⟨X:,j, λ
⋆⟩|
)
j∈S

∥∥∥ q−1

ℓt
≥ c

(
t⋆ n ∥w⋆∥t − C t⋆ τs

√
n smax{1/t, 1/2}

) q−1

+
. (A.106)

Applying the mean-value inequality to the map z 7→ z q−1,

|(x± y)q−1 − xq−1| ≤ C (xq−2y + yq−1),
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with x = t⋆n∥w⋆∥t and y = Ct⋆τs
√
n smax{1/t, 1/2}, we obtain

∥∥∥(|⟨X:,j, λ
⋆⟩|
)
j∈S

∥∥∥ q−1

ℓt
= t q−1

⋆ n q−1 ∥w⋆∥ q−1
t (1+o(1)) ± C (t⋆τs

√
n) q−1 smax{ (q−1)/2, (q−1)/t }.

(A.107)

Recalling t = (q − 1)r and ∥w⋆∥t ≍ ∥w⋆∥(q−1)r, we obtain the spike contribution

stated in (5.2). (For completeness: specializing (A.94) to t = q together with

Lemma 8 at t = q yields the same rate and remainder exponent as in (A.107).)

By Lemma 9 (bulk control (A.93)) together with (A.92),

∥(|⟨X:,j, λ
⋆⟩|)j /∈S∥(q−1)r ≍ (d− s)1/((q−1)r) t⋆ ∥Y ∥2.

Raising to the (q − 1)-th power and using ∥Y ∥2 ≍ τs
√
n (Lemma 4),

∥(|⟨X:,j, λ
⋆⟩|)j /∈S∥ q−1

(q−1)r ≍ (d− s)1/r
(
t⋆ τs
√
n
) q−1

. (A.108)

Plug (A.107) and (A.108) into (A.102). This yields

∥ŵp∥r ≍ max
{
t q−1
⋆ n q−1 ∥w⋆∥ q−1

(q−1)r , (d−s)1/r
(
t⋆ τs
√
n
) q−1

, smax{1/r, (q−1)/2}
(
t⋆ τs
√
n
) q−1

}
,

which is exactly the three-term unified bound in (5.2). When r < 2(p − 1) and

(d− s) ≳ s, the third term is absorbed by the bulk term, recovering the two-term

maximum.

In the proportional regime (d− s) ≍ κbulk n, balance the two leading terms in

∥X⊤Y ∥qq (cf. (A.38)) to define

nqWq ≍ (d− s) τ qs nq/2 ⇐⇒ nq/2 ≍ κbulk
τ qs
Wq

⇐⇒ n⋆ ≍
(
κbulk

τ qs
Wq

) 2
q−2
,

which matches (5.3).

(i) Dual spike-dominated regime n ≫ n⋆. Then ∥X⊤Y ∥qq ≍ nqWq and (A.98)

gives

t q−1
⋆ ≍ τ 2

s n

nqWq

= τ 2
s

Wq

n−(q−1). (A.109)

Consequently
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(d− s)1/r
(
t⋆ τs
√
n
) q−1

≍ τ q+1
s

Wq

n
1
r

− 1
2(p−1) , (A.110a)

smax{ 1/r, (q−1)/2 }
(
t⋆ τs
√
n
) q−1

≍ τ q+1
s

Wq

smax{ 1/r, (q−1)/2 } n− 1
2(p−1) . (A.110b)

In particular, when r ≤ 2(p − 1) the two “bulk-type” terms are of the same

order (and are dominated by the spike main when r ≥ 2(p− 1)); this recovers (5.4).

(ii) Dual bulk-dominated regime n≪ n⋆. Then ∥X⊤Y ∥qq ≍ (d− s)τ qsnq/2 and

t q−1
⋆ ≍ τ 2

s n

(d− s)τ qsnq/2 = τ 2−q
s

(d− s) n
1− q

2 . (A.111)

Therefore

(d− s)1/r
(
t⋆ τs
√
n
) q−1

≍ κ
1
r

−1
bulk τs n

1
r

− 1
2 , (A.112a)

smax{ 1/r, (q−1)/2 }
(
t⋆ τs
√
n
) q−1

≍ κ−1
bulk τs s

max{ 1/r, (q−1)/2 } n−1/2. (A.112b)

Taking the maximum together with the spike main term gives (5.5) whenever

the third term is absorbed; otherwise the third term with exponent max{1/r, (q −

1)/2} − 1/2 may dominate.

This completes the proof of (5.2) (three-term form), the energy scale (A.100),

hence the proof of Theorem 12.

A.2.4 Two concrete corollaries: single spike and flat support

We keep p ∈ (1, 2], q = p
p−1 ∈ [2,∞), r ∈ [1, p], and κbulk = lim inf(d − s)/n > 0.

Recall the unified bound from Theorem 12. We will repeatedly use the identity

∥ŵp∥r ≍ max
{
t q−1
⋆ n q−1 ∥w⋆∥ q−1

(q−1)r, (d− s)1/r
(
t⋆ τs
√
n
) q−1

, (A.113)

smax{ 1/r, (q−1)/2 }
(
t⋆ τs
√
n
) q−1

}
, (A.114)

together with

t q−1
⋆ = ∥Y ∥2

2
∥X⊤Y ∥qq

, n⋆ ≍
(
κbulk

τ qs
Wq

) 2
q−2

, Wq =
∑
j∈S
|w⋆j |q, τ 2

s = ∥w⋆∥2
2 + σ2.

(A.115)
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Case (i): single spike (s = 1). Let the support be {j0} and write a :=

|w⋆j0| > 0. Then

Wq = aq, ∥w⋆∥(q−1)r = a, τ 2
s = a2 + σ2. (A.116)

The transition scale simplifies to

n⋆ ≍
(
κbulk

(a2 + σ2)q/2

aq

) 2
q−2

. (A.117)

In (A.113), the spike remainder is dominated by the bulk term since

spike remainder
bulk = (d− 1)−1/r ≪ 1 for large d. (A.118)

Dual spike-dominated (n ≫ n⋆). Using the phase form (5.4), we obtain

∥ŵp∥r ≍


(a2 + σ2) q+1

2

aq
n

1
r

− 1
2(p−1) , r ≤ 2(p− 1),

a2 + σ2

a
, r > 2(p− 1).

(A.119)

Dual bulk-dominated (n ≪ n⋆). Using (5.5),

∥ŵp∥r ≍ max
{
κ

1
r

−1
bulk (a2 + σ2)1/2 n

1
r

− 1
2 , κ−1

bulk (a2 + σ2)
2−q

2 a q−1 n
q
2 −1

}
. (A.120)

(The third term in (5.5) equals κ−1
bulkτsn

−1/2 and is dominated by the first term for

large n.)

Case (ii): flat signal on its support. Assume w⋆j = a sj for all j ∈ S with

|sj| = 1 and |S| = s. Then

∥w⋆∥2 =
√
s |a|, Wq = s |a|q, ∥w⋆∥(q−1)r = s

1
(q−1)r |a|, τ 2

s = s a2 + σ2.
(A.121)

The transition scale grows linearly in s:

n⋆ ≍
(
κbulk

(sa2 + σ2)q/2

s |a|q

) 2
q−2

= κ
2

q−2
bulk s

(
1 + σ2

sa2

) q
q−2

. (A.122)

Dual spike-dominated (n ≫ n⋆). From (5.4),

∥ŵp∥r ≍


(sa2 + σ2) q+1

2
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, r > 2(p− 1).

(A.123)
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In the noiseless case (σ = 0),

r > 2(p− 1) : ∥ŵp∥r ≍ s1/r |a|, r ≤ 2(p− 1) : ∥ŵp∥r ≍ s
q−1

2 |a| n
1
r

− 1
2(p−1) .

(A.124)

Dual bulk-dominated (n ≪ n⋆). From (5.5),

∥ŵp∥r ≍ max
{
κ

1
r

−1
bulk (sa2 + σ2)1/2 n

1
r

− 1
2 , κ−1

bulk (sa2 + σ2)
2−q

2 s1/r|a| q−1 n
q
2 −1,

(A.125)

κ−1
bulk (sa2 + σ2)1/2 smax{1/r, (q−1)/2} n−1/2

}
. (A.126)

When r ≤ 2(p − 1) and s ≲ (d − s), the third term is absorbed by the first

(Remark A.2.1).



B
Additional appendices for Chapter 3

B.1 More related work

B.1.1 Preliminaries: two kinds of questions generalization
and two types of inductive bias

In this supplementary section we expand on our briefer discussion of related work

in the Introduction of the main paper. The question of why and how DNNs

generalize in the overparameterized regime has generated a vast literature. To

organize our discussion, we follow [Mingard et al., 2021] and first distinguish two

kinds of questions about generalization in overparameterized DNNs:

1) The question of over-parameterized generalization: Why do DNNs

generalize at all in the overparameterized regime, where classical learning theory

suggests they should heavily overfit.

2) The question of fine-tuned generalization: Given that a DNN already

generalizes reasonably well, how can detailed architecture choice, optimizer choice,

and hyperparameter tuning further improve generalization?

Question 2) is the main focus of a large tranche of the literature on generalization,

and for good reason. In order to build state-of-the-art (SOTA) DNNs, even a

few percent accuracy improvement (taking image classification as an example) is

important in practice. Improved generalization performance can be achieved in

176
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many ways, including local adjustments of the DNNs structure (e.g. convolutional

layers, pooling layers, shortcut connections etc.), hyperparameter tuning (learning

rate, batch size etc.), or choosing different optimizers (e.g. vanilla SGD versus

entropySGD [Chaudhari et al., 2019] or Adam Kingma and Ba [2014].

In this paper, however, we are primarily interested in question 1). As pointed

out, for example famously in [Zhang et al., 2016a], but also by many researchers

before that 1, DNNs can be proven to be highly expressive, so that the number of

hypotheses that can fit a training data set S, but generalize poorly, is typically

many orders of magnitude larger than the number that can actually generalize.

And yet in practice DNNs do not tend to overfit much, and can generalize well,

which implies that DNNs must have some kind of inductive bias [Shalev-Shwartz

and Ben-David, 2014] toward hypotheses that generalise well on unseen data.

Following the framework of [Mingard et al., 2021], we use the language of

functions (rather than that of hypotheses, see also Section B.2.) to distinguish

two major potential types of inductive bias.

A) The inductive bias upon upon random sampling of parameters over

a parameter distribution Pw(w). In other words, given a DNN architecture,

loss function etc. and a measure over parameters Pw(w) (which can be taken to be

the initial parameter distribution for an optimiser, but is more general), this bias

occurs when certain types of functions more likely to appear upon random sampling

of parameters than others. This inductive bias can be expressed in terms of a prior

over functions P (f), or in terms of a posterior PB(f |S) when the functions are

conditioned, for example, on obtaining zero error on training set S.

B) The inductive bias induced by optimizers during a training pro-

cedure. In other words, given an inductive bias upon initialization (from A),

does the training procedure induce a further inductive bias on what functions a

DNN expresses? One way of measuring this second form of inductive bias is to

calculate the probability Popt(f |S) that an DNN trained to zero error on training set
1For example, Leo Breiman, included the question of overparameterised generalization in DNN

back in in 1995 as one of the main issues raised by his reflections on 20 years of refereeing for
Neurips [Breiman, 1995]),
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S with optimizer opt (typically a variant of SGD) expresses function f , and to then

compare it to the Bayesian posterior probability PB(f |S) that this function obtains

upon random sampling of parameters Mingard et al. [2021]. In principle PB(f |S)

expresses the inductive bias of type A), so any differences between Popt(f |S) and

PB(f |S) could be due to inductive biases of type B).

These two sources of inductive bias can be relevant to both questions above

about generalization. Wwe emphasise that our taxonomy of two questions about

generalization, and two types of inductive bias is just one way of parsing these

issues. We make these first order distinctions to help clarify our discussion of the

literature, and are aware that there are other ways of teasing out these distinctions.

B.1.2 Related work on flatness

The concept “flatness” of the loss function of DNNs can be traced back to Hinton

and van Camp [1993] and Hochreiter and Schmidhuber [1997a]. Although these

authors did not provide a completely formal mathematical definition of flatness,

Hochreiter and Schmidhuber [1997a] described flat minima as “a large connected

region in parameter space where the loss remains approximately constant”, which

requires lower precision to specify than sharp minima. They linked this idea to

the minimum description length (MDL) principle [Rissanen, 1978], which says

that the best performing model is the one with shortest description length, to

argue that flatter minima should generalize better than sharp minima. More

generally, flatness can be interpreted as a complexity control of the hypotheses

class introduced by algorithmic choices.

The first thing to note is that flatness is a property of the functions that a DNN

converges on. In other words, the basic argument above is that flatter functions

will generalize better, which can be relevant to both questions 1) and 2) above.

It is a different question to ask whether a certain way of finding functions (say

by optimising a DNN to zero error on a training set) will generate an inductive

bias towards flatter functions. In Hochreiter and Schmidhuber [1997a], the authors

proposed an algorithm to bias towards flatter minima by minimizing the training



B. Additional appendices for Chapter 3 179

loss while maximizing the log volume of a connected region of the parameter space.

This idea is similar to the recent suggestion of entropy-SGD Chaudhari et al. [2019],

where the authors also introduced an extra regularization to bias the optimizer

into wider valleys by maximizing the “local entropy”.

In an influential paper, Keskar et al. [2016] reported that the solutions found by

SGD with small batch sizes generalize better than those found with larger batch

sizes, and showed that this behaviour correlated with a measure of “sharpness”

(sensitivity of the training loss to perturbations in the parameters). Sharpness can

be viewed as a measure which is the inverse of the flatness introduced by Hinton

and van Camp [1993] and Hochreiter and Schmidhuber [1997a]. This work helped to

popularise the notion that SGD itself plays an important role in providing inductive

bias, since differences in generalization performance and in sharpness correlated with

batch size. In follow-on papers others have showed that the correlation with batch

size is more complex, as some of the improvements can be mimicked by changing

learning rates or number of optimization steps for example, see [Hoffer et al., 2017,

Goyal et al., 2017, Smith et al., 2017a, Neyshabur et al., 2017b]. Nevertheless, these

changes in generalization as a function of optimizer hyperparameters are important

things to understand because they are fundamentally type B inductive bias. Because

the changes in generalization performance in these papers tend to be relatively

small, they mainly impinge on question 2) for fine-tuned generalization. Whether

these observed effects are relevant for question 1) is unclear from this literature.

Another strand of work on flatness has been through the lens of generalization

bounds. For example, Neyshabur et al. [2017b] showed that sharpness by itself

is not sufficient for ensuring generalization, but can be combined, through PAC-

Bayes analysis, with the norm of the weights to obtain an appropriate complexity

measure. The connection between sharpness and the PAC-Bayes framework was

also investigated by Dziugaite and Roy [2017b], who numerically optimized the

overall PAC-Bayes generalization bound over a series of multivariate Gaussian

distributions (different choices of perturbations and priors) which describe the

KL-divergence term appearing in the second term in the combined generalization
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bound by Neyshabur et al. [2017b]. For more discussion of this literature on bounds

and flatness, see also the recent review Valle-Pérez and Louis [2020].

Rahaman et al. [2018] also draw a connection to flatness through the lens of

Fourier analysis, showing that DNNs typically learn low frequency components

faster than high frequency components. This frequency argument is related

to the input-output sensitivity picture, which is systematically investigated in

Novak et al. [2018a].

There is also another wide-spread belief that SGD trained DNNs are implicitly

biased towards having small parameters norms or large margin, intuitively inspired

by classical ridge regression and SVMs. Bartlett et al. [2017c] presented a margin-

based generalization bound that depends on spectral and L2,1 norm of the layer-wise

weight matrices of DNNs. Neyshabur et al. [2017a] later proved a similar spectral-

normalized margin bound using PAC-Bayesian approach rather than the complex

covering number argument used in Bartlett et al. [2017c]. Liao et al. [2018] further

strengthen the theoretical arguments that an appropriate measure of complexity

for DNNs should be based on a product norm by showing the linear relationship

between training/testing cross entropy loss of normalized networks. Jiang et al.

[2018] also empirically studied the role of margin bounds.

In a recent important large-scale empirical work on different complexity measures

by Jiang et al. [2019a], 40 different complexity measures are tested when varying

7 different hyperparameter types over two image classification datasets. They do

not introduce random labels so that data complexity is not thoroughly investigated.

Among these measures, the authors found that sharpness-based measures outperform

their peers, and in particular outperform norm-based measures. It is worth

noting that their definition of “worst case” sharpness is similar to Definition 5

but normalized by weights, so they are not directly comparable. In fact, their

definition of worst case sharpness in the PAC-Bayes picture is more close to the

works by Petzka et al. [2019], Rangamani et al. [2019], Tsuzuku et al. [2019] which

focus on finding scale-invariant flatness measure. Indeed enhanced performance are

reported in these works. However, these measures are only scale-invariant when the
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scaling is layer-wise. Other methods of re-scaling (e.g. neuron-wise re-scaling) can

still change the metrics. Moreover, the scope of Jiang et al. [2019a] is concentrated

on the practical side (e.g. inductive bias of type B) and does not consider data

complexity, which we believe is a key ingredient to understanding the inductive

bias needed to explain question 1) on generalization.

Finally, in another influential paper, Dinh et al. [2017a] showed that many

measures of flatness, including the sharpness used in Keskar et al. [2016], can

be made to vary arbitrarily by re-scale parameters while keeping the function

unchanged. This work has called into question the use of local flatness measures

as reliable guides to generalization, and stimulated a lot of follow on studies,

including the present paper where we explicitly study how parameter-rescaling

affects measures of flatness as a function of epochs.

B.1.3 Related work on the infinite-width limit

A series of important recent extensions of the seminal proof in Neal [1994] - that

a single-layer DNN with random iid weights is equivalent to a Gaussian process

(GP) [Mackay, 1998] in the infinite-width limit - to multiple layers and architectures

(NNGPs) have recently appeared [Lee et al., 2017, Matthews et al., 2018, Novak

et al., 2018b, Garriga-Alonso et al., 2019, Yang, 2019]. These studies on NNGPs

have used this correspondence to effectively perform a very good approximation

to exact Bayesian inference in DNNs. When they have compared NNGPs to SGD-

trained DNNs the generalization performances have generally shown a remarkably

close agreement. These facts require rethinking the role SGD plays in question

1) about generalization, given that NNGPs can already generalize remarkably

well without SGD at all.

B.1.4 Relationship to previous papers using the function
picture

The work in this paper builds on a series of recent papers that have explored the

function based picture in random neural networks. We briefly review these works
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to clarify their connection to the current paper.

Firstly, in [Valle-Pérez et al., 2018], the authors demonstrated empirically that

upon random sampling of parameters, DNNs are highly biased towards functions

with low complexity. This behaviour does not depend very much on Pw(w) for

a range of initial distributions typically used in the literature. Note that this

behaviour does start to deviate from what was found in [Valle-Pérez et al., 2018],

when the system enters a chaotic phase, which can be reached with for tanh or

erf non-linearities and for Pw(w) with a relatively large variance Yang and Salman

[2019]. They show more specifically that the bias towards simple functions is

consistent with the “simplicity bias” from Dingle et al. [2018, 2020], which was

inspired by the coding theorem from algorithmic information theory (AIT) [Li

and Vitanyi, 2008], first derived by Levin [1974] . The idea of simplicity bias in

DNNs states that if the parameter-function map is sufficiently biased, then the

probability of the DNN producing a function f on input data drops exponentially

with increasing Kolmogorov complexity K(f) of the function f . In other words,

high P (f) functions have low K(f), and high K(f) functions have low P (f). A

key insight from [Dingle et al., 2018, 2020] is that K(f) can be approximated by

an appropriate measure K̃(f) and still be used to make predictions on P (f), even

if the true K(f) is formally incomputable. Recently Mingard et al. [2019] and

De Palma et al. [2018] gave two separate non-AIT based theoretical justifications for

the existence of simplicity bias in DNNs. In other words, this line of work suggests

that DNNs have an intrinsic bias towards simple functions upon random sampling

of parameters, and in our taxonomy, that is bias of type A).

If simplicity bias in DNNs matches “natural” data distributions, then, at least

upon random sampling of parameters, this should help facilitate good generalization.

Indeed, it has been shown that data such as MNIST or CIFAR-10 is relatively

simple [Lin et al., 2017, Goldt et al., 2019, Spigler et al., 2019], suggesting that an

inductive bias toward simplicity will assist with good generalization.

A second paper upon which the current one builds is [Mingard et al., 2021], where

extensive empirical test (for a range of architectures (FCN, CNN, LSTM), datasets
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(MNIST, Fashion-MNIST, CIFAR-10,ionosphere, IMDb moviereview dataset), and

SGD variants (vanilla SGD, Adam, Adagrad, RMSprop, Adadelta), as well as for

different batch sizes and learning rates) were done of the hypothesis that:

Popt(f |S) ≈ PB(f |S). (B.1)

Here Popt(f |S) is the probability that an optimiser (SGD or one of its variants)

converges upon a function f after training to zero training error on a training

set S. By training over many different parameter initializations, Popt(f |S) can be

calculated. Similarly, the Bayesian posterior probability PB(f |S) is defined as the

probability that upon random sampling of parameters, a DNN expresses function

f , conditioned on zero error on S. The functions were, as in the current paper,

a restriction to a given training set S and test set E. Since the systems always

had zero error on the training set, functions could be compared by what they

produced on the test set (for example, the set of labels on the images for image

classification). It was found that the hypothesis (B.1.4) held remarkably well to

first order, for a wide range of systems. At first sight this similarity is surprising,

given that the procedures to generate Popt(f |S) (training with an optimiser such

as SGD) is completely different from those for PB(f |S) (where GP techniques and

direct sampling were used), which knows nothing of optimisers at all. The fact

that these two probabilities are so similar suggests that any inductive bias of type

B, which would be a bias beyond what is already present in PB(f |S), is relatively

small. While this conclusion does not imply that there are no induced biases

of type B), and clearly there are since hyperparameter tuning affects fine-tuned

generalization, it does suggest that the main source of inductive bias needed to

explain 1), the question of why DNNs generalize in the first place, is found in the

inductive biases of type A), which are already there in PB(f |S). In [Mingard

et al., 2021], the authors propose that, for highly biased priors P (f), that SGD

is dominated by the large differences in basin size for the different functions f ,

and so finds functions with probabilities dominated by the initial distribution. A
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similar effect was seen in evolutionary systems Schaper and Louis [2014], Dingle

et al. [2015] where it was called the arrival of the frequent.

In addition, in [Mingard et al., 2021], the authors observed for one system that

− log(PB(f |S)) scaled linearly with the generalization error on E for a wide range of

errors. This preliminary result provided inspiration for the current paper where we

directly study the correlation between the prior P (f) and the generalization error.

The third main function based paper that we build upon is [Valle-Pérez and

Louis, 2020] which provides a comprehensive analysis of generalization bounds. In

particular, it studies in some detail the Marginal Likelihood PAC-Bayes bound,

first presented in Valle-Pérez et al. [2018], which is predicts a direct link between

the generalization error and the log of the marginal likelihood P (S). P (S) can

be interpreted as the total prior probability that a function is found with zero

error on the training set S, upon random sampling of parameters of the DNN. The

performance of the bound was tested for challenges such as varying amounts of

data complexity, different kinds of architectures, and different amounts of training

data (learning curves). For each challenge it works remarkably well, and to our

knowledge no other bound has been tested this comprehensively. Again, the good

performance of this bound, which is agnostic about optimisers, suggest that a large

part of the answer to question 1) can be found in the inductive bias of type A),

e.g. that found upon initialization. The bound is not accurate enough to explain

smaller effects relevant for fine-tuning generalization, which can originate from

other sources such as a difference in optimiser hyperparameters. These conclusions

are consistent with the different approach in this paper, where we use the prior

P (f) (which knows nothing about SGD) and show that it also correlates with

predicted test error for DNNS trained with SGD and its variants. We do propose

a simpler bound that is consistent with the observed scaling, but more work is

needed to get anywhere near the rigour found in [Valle-Pérez and Louis, 2020]

for the full marginal likelihood bound.
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Finally, we note that in all three of these papers, GPs are used to calculate

marginal likelihoods, posteriors, and priors. Technical details of how to use GPs

can be found clearly explained there.

The current paper builds on this body of work and uses some of the techniques

described therein, but it is distinct. Firstly, our measurements on flatness are new,

and our claim that the prior P (f) correlates with generalization, while indirectly

present in [Mingard et al., 2021] was not developed there at all as that paper focuses

on the posterior PB(f |S), and did not use the attack set trick to vary functions

that are consistent with S, and so is tackling a different question (namely how

much extra inductive bias comes from using SGD over the inductive bias already

present in the Bayesian posterior). The attack set trick means that P (S) does not

change, while clearly the generalisation error (or expected test error) does change,

so the marginal likelihood bound is not predictive here.

B.2 Parameter-function map and neutral space

The link between the parameters of a DNN and the function it expresses is formally

described by the parameter-function map:

Definition 14 (Parameter-function map). Consider the model defined in Defini-

tion 6, if the model takes parameters within a set W ⊆ Rn, then the parameter-

function map M is defined as

M : W → F

w 7→ fw.

where fw denotes the function parameterized by w.

The parameter-function map, introduced in [Valle-Pérez et al., 2018], serves as

a bridge between a parameter searching algorithm (e.g. SGD) and the behaviour

of a DNN in function space. In this context we can also define the:

Definition 15 (Neutral space). For a model defined in Definition 14, and a given

function f , the neutral space Nf ⊆ W is defined as

Nf := {w ∈ W :M(w) = f}.
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The nomenclature comes from genotype-phenotype maps in the evolutionary

literature [Manrubia et al., 2020], where the space is typically discrete, and a

neutral set refers to all genotypes that map to the same phenotype. In this context,

the Bayesian prior P (f) can be interpreted as the probabilistic volume of the

corresponding neutral space.

B.3 Clarification on definition of functions and
prior

Figure B.1: The diagram of different definitions for functions represented by DNNs.

The discussion of “functions” represented by DNNs can be confusing without

careful definition. In Fig. B.1 we list four different interpretations of “functions”

commonly seen in literature which also are directly related to our work. These

interpretations cover both regression and classification settings. Let X be an

arbitrary input domain and Y be the output space. According to different in-

terpretations of the function represented by a DNN, Y will be different, for the

same choice of X and DNN.
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Definition 16 (fDNN). Consider a DNN whose input domain is X . Then fDNN

belongs to a class of functions FDNN which define the mapping between X to the

pre-activation of the last layer of DNN, which lives in Rd:

fDNN ∈ FDNN : X → Rd

d is the width of the last layer of DNN.

In standard Gaussian process terminology, fDNN is also called latent func-

tion [Rasmussen, 2003]. This is the function we care about in regression problems.

In the context of supervised learning, we have to make some assumptions about

the characteristics of FDNN, as otherwise we would not know how to choose between

functions which are all consistent with the training sample but might have hugely

different generalization ability. This kind of assumptions are called inductive bias.

One common approach of describing the inductive bias is to give a prior probability

distribution to FDNN, where higher probabilities are given to functions that we

consider to be more likely. For DNNs, FDNN is a set of functions over an (in

general) uncountably infinite domain X . There are several approaches to define

probability distributions over such sets. Gaussian processes represent one approach,

which generalizes Gaussian distributions to function spaces. If we ask only for the

properties of the functions at a finite number of points, i.e. restriction of FDNN

to C : {c1, . . . , cn} ⊂ X (see Definition 6), then inference with a Gaussian process,

reduces to inference with a standard multidimensional Gaussian distribution. This is

an important property of Gaussian process called consistency, which helps in making

computations with Gaussian processes feasible. As shown in Section B.4, we can

readily compute with this GP prior over FDNN as long as it is restricted on a finite

data set. Later in Definition 19 we will formally define the restricted function fRES.

In classification tasks, we typically get a data sample from X ×Y , where without

loss of generality Y has the form of Y = {1, . . . , k} where k is the number of classes.

For simplicity, we further assume binary classification where Y = {0, 1} Note in the

scope of binary classification we have the last layer width of d = 1. To grant the

outputs of the function represented by a DNN a probability interpretation, we need
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the outputs lie in the interval (0, 1). One way of doing so is to “squash” the outputs

of fDNN to (0, 1) by using a final activation, typically a logistic or sigmoid function

λ(z) = (1 + exp(−z))−1. Subsequently we have the definition of fACT in Fig. B.1:

Definition 17 (fACT). Consider the setting and fDNN defined in Definition 16

where d = 1, and a logistic activation λ(z) = (1 +exp(−z))−1. Then fACT is defined

as :

fACT := fDNN ◦ λ : X → (0, 1)

where ◦ denotes function composition. we also define the space of fACT as

FACT = {fACT for every fDNN ∈ FDNN}

In real life classification datasets, we typically do not have access to the

probability of an input classified as one certain label, but the labels instead. When

we discuss functions represented by DNNs in classification, we usually mean the

coarse-grained version of fACT ∈ FACT, meaning we group all outputs to 1 if the

probability of predicting the inputs as being label “1” is greater or equal than 0.5,

and 0 otherwise. Mathematically, we define fLAB as:

Definition 18 (fLAB). Consider the setting and fACT defined in Definition 17 and

a threshold function

τ(z) =
 1 if z ≥ 0.5

0 otherwise .

Then we define fLAB and the space FLAB as:

fLAB = fACT ◦ τ : X → {0, 1}

FLAB = {fLAB for every fACT ∈ FACT}

The Definition 18 allows us to describe the function represented by a DNN in

binary classification as a binary string consisting of “0” and “1”, whose length is

equal to the size of input domain set |X |. As explained earlier, in classification

we also want to put a prior over FLAB and use this prior as our belief about

the task before seeing any data.
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Finally, as we mentioned above, to make computations tractable, we restrict the

domain to a finite set of inputs. We use the definition of restriction in Definition 6

to formally define the “functions” we mean and practically use in our paper:

Definition 19 (fRES). Consider a DNN whose input domain is X with a last layer

width d = 1 . Let C = {c1, . . . , cn} ⊂ X be any finite subset of X with cardinality

n ∈ N. The restriction of function space F ∈ {FDNN,FLAB} to C is denoted as FC ,

and is defined as the space of all functions from C to Y realizable by functions in F .

We denote with fRES elements of their corresponding spaces of restricted functions.

Specifically, in regression:

fRES ∈ FCDNN : C → R

and in binary classification:

fRES ∈ FCLAB : C → {0, 1}

Note that in Definition 19 we only consider scalar outputs in the regression

setting. For multiple-output functions, one approach is to consider d Gaussian

processes and compute the combined kernel [Alvarez et al., 2011].

In statistical learning theory, the function spaces FDNN and FLAB are also called

hypotheses classes, with their elements called hypotheses [Shalev-Shwartz and Ben-

David, 2014]. It is important to note that our definition of prior and its calculation

is based on the restriction of the hypotheses class to the concatenation of training

set and test set S + E. Mathematically, this means the prior of a function P (f)

we calculated in the paper is precisely P (fRES), except for the Boolean system in

Section 3.5.1, where the input domain X is discrete and small enough to enumerate

(this can also be thought of as the trivial restriction). As explained above, this

restriction is inevitable if we want to compute the prior over FDNN or FLAB. A

simple example on MNIST [LeCun et al., 1998] can also help to gain a intuition

of the necessity of such restriction, where all inputs would include the set of

28x28 integer matrices whose entries take values from 0-255, which gives 256784

possible inputs. This indicates that for real-life data distributions the number
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of all possible inputs is hyper-astronomically large, if not infinite. Nevertheless,

In some cases, such as the Boolean system described in Valle-Pérez et al. [2018]

and treated in section 3.5.1, there is no need for such restriction because it is

feasible to enumerate all possible inputs: there are only 7 Boolean units which

give 27 = 128 possible data sample. However, even in such cases, the number of

possible functions is still large (2128 ≈ 1038).

B.4 Gaussian process approximation of the prior

In this section, we sketch out how we calculated the prior of a function P (f) [Valle-

Pérez et al., 2018, Mingard et al., 2021]. As in those papers, we use Gaussian

processes, which have been shown to be equivalent to DNNs in the limit of

infinite layer width [Neal, 1994, Lee et al., 2017, Matthews et al., 2018, Tan,

2008, Rasmussen, 2003]. These neural network GPs (NNGPs) have been shown

to accurately approximate the prior over functions P (f) of finite-width Bayesian

DNNs [Valle-Pérez et al., 2018, Matthews et al., 2018, Mingard et al., 2021].

For the NNGPs, a GP prior is placed on the pre-activations z of the last layer of

the neural network (before a final non-linearity, e.g. softmax, is applied), meaning

that for any finite inputs set x = {x1, . . . , xn}, the random output vector (pre-

activations) z = [z (x1) , . . . , z (xn)]T has a Gaussian distribution. Note that in

this paper, the the last layer has a single activation since we only focus on binary

classification. This setting is corresponding to the definition of function restriction

is Definition 19, with z ∈ Rn. Without loss of generality, we can assume such a

process has a zero mean. The prior probability of the outputs z can be calculated as:

P (z) = 1
(2π)n

2 Σ 1
2

exp
(
−1

2zTΣ−1z
)

(B.2)

Σ is the covariance matrix (often called kernel), whose entries are defined as

Σ(xi, xj) ≡ E[z(xi), z(xj)]. Neal [1994] gave the basic form of kernel Σ in single

hidden layer case, where Σ depends on the variance of weights and biases (σw
and σb). In DNNs with multiple hidden layers, the kernel for layer l can be

calculated recursively by induction, assuming the layer l−1 is a GP [Lee et al., 2017,



B. Additional appendices for Chapter 3 191

Matthews et al., 2018]. The kernel for fully connected ReLU-activated networks

has a well known arc-cosine kernel analytical form [Cho and Saul, 2009], which

we used in all FCNs in our work.

For ResNet50, the analytical form of GP kernel is intractable. Instead, we

use a Monte Carlo empirical kernel [Novak et al., 2018b], and apply one step of

the fully connected GP recurrence relation [Lee et al., 2017], taking advantage

of the fact that the last layer of ResNet50 is fully connected. Mathematically,

the empirical kernel can be expressed as:

Σ̃ (xi, xj) := σ2
w

Mn

M∑
m=1

n∑
c=1

(
hL−1

wm
(xi)

)
c

(
hL−1

wm
(xj)

)
c

+ σ2
b (B.3)

where
(
hL−1

wm
(x)
)
c

is the activation of c-th neuron in the last hidden layer (L is the

total number of layers) for the network parameterized by the m-th sampling of

parameters wm, M is the number of total Monte Carlo sampling, n is the width of

the final hidden layer, and σw, σb are the weights and biases variance respectively.

In our experiments, M is set to be 0.1 × (|S| + |E|).

After calculating P (z) with the corresponding kernel, the prior over (coarse-

grained) restriction of functions P (f) can be calculated through likelihood P (f |z),

which in our case is just a Heaviside function representing a hard sign nonlinearity.

As non-Gaussian likelihood produces an intractable P (f), we used Expectation

Propagation (EP) algorithm for the approximation of P (f) [Rasmussen, 2003]. This

same EP approximation was used in Mingard et al. [2021] where it is discussed

further. We represent the function f by the input-output pairs on the concatenation

of training set and test set S + E.

B.5 Implementing parameter re-scaling

In this section we describe in detail how we implement the alpha scaling in DNNs

first proposed by Dinh et al. [2017a]. The widely used rectified linear activation

(ReLU) function

ϕrect(x) = max(x, 0)
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exhibits the so-called “non-negative homogeneity” property:

∀(z, α) ∈ R× R+, ϕrect(zα) = αϕrect(z)

The action of a L-layered deep feed-forward neural network can be written as:

y = ϕrect (ϕrect (. . . ϕrect (x ·W1 + b1) . . .) ·WL−1 + bL−1) ·WL + bL

in which

• x is the input vector

• WL is the weight matrix of the L-th layer

• bL is the bias vector of the L-th layer

To simplify notation, we have not included the final activation function, which may

take any form (softmax or sigmoid etc.) without modification of the proceeding

arguments. Generalizing the original arguments from Dinh et al. [2017a] slightly to

include bias terms, we exploit the non-negative homogeneity of the ReLU function

to find that a so-called “α-scaling” of one of the layers will not change its behaviour.

Explicitly applying this to the i-th layer yields:

(ϕrect (x · αWi + αbi)) ·
1
α
Wi+1 = (ϕrect (x ·Wi + bi)) ·Wi+1 (B.4)

Clearly, the transformation described by (Wi, bi,Wi+1) →
(
αWi, αbi,

1
α
Wi+1

)
will

lead to an observationally equivalent network (that is, a network whose output is

identical for any given input, even if the weight and bias terms differ).

Since the α scaling transformation does not change the function, it does not

change the prior of the function. However, for large enough α, as shown for example

in Fig. 3.5, we see that SGD can be “knocked” out of the current neutral space

because of the large gradients that are induced by the α scaling. This typically leads

to the prior suddenly surging up, because the random nature of the perturbation

means that the system is more likely to land on large volume functions. However,

we always observe that the prior then drops back down quite quickly as SGD
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Figure B.2: The effect of alpha scaling on prior and sharpness. At each epoch we
calculate the sharpness and the prior for our FCN on MNIST system with |S| = 500. The
green dashed line denotes where zero-training error is reached and post-training starts.
The red dashed line denotes the epoch where α-scaling takes place with α = 5.0. Here
the value of α is not big enough to “knock” the optimizer out of the neutral space, upon
alpha scaling, in contrast to Fig. 3.5. As expected, we observe no change in prior upon
alpha scaling (note that prior can change on overtraining if a slightly different function is
found by SGD). The sharpness shows a larger peak upon alpha-scaling, as expected. See
Section 3.9.

reaches zero training error again. On the other hand, as shown in Fig. B.2, when

the value of α is smaller it does not knock SGD out of the neutral space, and

so the prior does not change at all. Nevertheless, the sharpness still exhibits a

strong spike due to the the alpha scaling.

Although not in the scope of this work, it is worth noting that the alpha scaling

process in Convolutional Neural Networks (CNNs) with batch normalization [Ioffe

and Szegedy, 2015] layer(s) is somewhat different. Because a batch normalization

layer will eliminate all affine transformations applied on its inputs, one can arbitrarily

alpha scale the layers before a batch normalization layer without needing to of

compensate in following layer, provided the scaling is linear.
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C.1 Measure families referenced in Chapter 4

We adopt the categories and normalizations used by prior experimental studies

of generalization measures [Jiang et al., 2019b, Dziugaite et al., 2020b]; for exact

constants and implementation choices, see App. C.6 of Dziugaite et al. [2020b].

Let a d-layer network have layer weights {Wi}di=1 with initialization {W 0
i }; write

∥ · ∥F and ∥ · ∥2 for Frobenius and spectral norms; let n denote training-set size

and γ a robust (e.g., 10th-percentile) training margin.

• Frobenius distances. Layerwise distances from initialization and norm

aggregates, e.g.

CFrobDist =

√√√√ d∑
i=1
∥Wi −W 0

i ∥2
F / n , Cparam =

√√√√ d∑
i=1
∥Wi∥2

F / n .

• Inverse margin. A margin-based surrogate,

Cinv-margin ∝
√
n

γ
.

• Spectral metrics. Products/means and distances in spectral norm, e.g.

C∏ spec =

√√√√ d∏
i=1
∥Wi∥2

2 / n , CDistSpecInit =

√√√√ d∑
i=1
∥Wi −W 0

i ∥2
2 / n .

194



C. Additional appendices for Chapter 4 195

• Combined spectral–Frobenius ratio. We follow the combined ratio used

in prior large-scale studies (App. C.6 of Dziugaite et al., 2020a), denoted

FRO_OVER_SPEC, which normalizes Frobenius quantities by spectral ones to

reduce raw scale effects. We report it alongside its constituents in our plots.

• PAC-Bayes families and flatness proxies. Bounds/proxies parameterized

by posterior radii σ (and magnitude-aware σ0), e.g.

CPACBAYES-ORIG = 1√
n

√
∥w∥2

2
4σ2 + log

(
n

δ

)
+ 10,

CFlatness = 1
σ
√
n
, CMAG-Flatness = 1

σ0
√
n
.

• Path norms. With w = vec(W1, . . . ,Wd) and fw2(1)[i] the ith logit when

all weights are squared elementwise and the input is all ones,

Cpath.norm =
√∑

i

fw2(1)[i] / n, Cpath.norm-over-margin =
√∑

i

fw2(1)[i] / (γ2n).

• VC-dimension proxy (parameter count). A coarse parameter-count

surrogate,

Cparams =

√√√√ d∑
i=1

k2
i ci−1(ci + 1) / n ,

with kernel sizes ki and channel counts ci.

C.2 Additional temporal behavior results: opti-
mizer sensitivity across measure families

This section extends the temporal analysis in Section 4.4 by holding the task

and hyperparameters fixed and changing only the optimizer. We train ResNet–50

on FashionMNIST with learning rate 0.01 and no early stopping, and we track

each measure across epochs. All panels use a logarithmic epoch axis; this makes

the early regime and successive orders of magnitude more legible, while very late

additive-only epochs occupy little horizontal extent unless they span a substantial

multiplicative range. The red dashed vertical line in every panel marks the first

epoch at which training accuracy reaches 100%; on a log axis this event is still
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(a) Adam (b) SGD with momentum

Figure C.1: Temporal behavior for PAC–Bayes variants on ResNet–50/FashionMNIST
at fixed learning rate 0.01. The epoch axis is logarithmic and the red dashed vertical line
marks the first 100% training-accuracy epoch. Adam exhibits slow post-accuracy growth
(notably in PACBAYES_ORIG and PACBAYES_INIT), whereas SGD with momentum keeps
the family flat once the dashed line is crossed.

easy to spot, but short post-interpolation intervals can appear visually narrow if

they do not cover a large multiplicative window. To avoid duplication with the

main text, we omit the path-norm panels here and focus on complementary families

whose behavior further illustrates optimizer sensitivity.

The PAC–Bayes family provides a clean illustration of this theme. Under Adam,

multiple bounds show slow, persistent growth after interpolation; on a log-time axis

this appears as a steady positive slope across late decades of epochs, most clearly

for PACBAYES_ORIG and PACBAYES_INIT. With momentum SGD, the same curves

remain essentially flat within error bars once the dashed line is crossed, and on the

log axis they sit nearly horizontal, emphasizing stability rather than drift.

Measures tied to weight scale show the starkest divergence. In the Frobenius

panel, Adam drives both the distance to initialization and the parameter norm

upward almost monotonically after the model has interpolated; on a log-time

axis this shows up as a persistent positive slope across late epochs. By contrast,

momentum SGD leaves both traces effectively horizontal once the dashed line

is passed, highlighting a stable plateau.

Not every family bends under this perturbation. Both optimizers rapidly

reduce the inverse-margin surrogate early in training and then hold it near a

floor. The log-time axis spreads out the initial drop, making the shared shape and
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(a) Adam (b) SGD with momentum

Figure C.2: Frobenius distance and parameter norm through time. The epoch axis is
logarithmic. Adam produces continued growth in both FRO_DIST and PARAM_NORM after
100% training accuracy, while SGD with momentum holds them near a constant level.

(a) Adam (b) SGD with momentum

Figure C.3: Inverse-margin surrogate through time on a logarithmic epoch axis. Both
optimizers shrink the measure quickly and then hover near a floor; Adam stabilizes at a
slightly higher level but the overall shape is shared.

timing transparent; Adam settles at a slightly higher level, but the trajectories

otherwise coincide.

Spectral surrogates reveal a subtler but consistent imprint. Under Adam,

the distance from initialization in spectral norm drifts upward over time; on log

time the slope is small but positive beyond the dashed line. Under momentum

SGD, the same quantity gently decreases from a plateau, appearing as a mild

negative slope. The ratio FRO_OVER_SPEC also separates in level, hinting that the

optimizer reshapes how mass is distributed across singular directions even when

predictive performance is unchanged.

As a neutral reference, the VC-dimension proxy behaves identically across

optimizers by construction, and the accompanying generalization error follows the

same calm trajectory. The log-time axis makes this invariance explicit: the traces
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(a) Adam (b) SGD with momentum

Figure C.4: Spectral metrics through time. The epoch axis is logarithmic. Adam
drives DIST_SPEC_INIT upward after interpolation, while momentum SGD yields a gentle
decline; FRO_OVER_SPEC diverges slightly in level.

(a) Adam (b) SGD with momentum

Figure C.5: VC-dimension proxy and generalization error through time on a logarithmic
epoch axis. The parameter-count surrogate is identical for both optimizers and the error
trajectories are similarly calm, providing a neutral reference.

remain overlapped across decades of epochs, serving as anchors that remind us

not all measures are sensitive to the optimizer change.

Taken together, these appendix figures broaden the temporal evidence. Several

measure families that depend directly on weight scale or spectrum—Frobenius

norms, spectral surrogates, and parts of the PAC–Bayes suite—react strongly to

an optimizer swap despite matching accuracy, while others such as margin-based

quantities and the VC proxy remain largely stable. Reading these results in

aggregate helps separate measure-intrinsic behavior from optimizer-driven drift

and, with the log-time view, clarifies whether apparent motion reflects genuine

multiplicative change or merely late-stage additive updates. For temporal behavior

of path norms, see Section 4.4, where those panels are discussed in detail.
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(a) Adam, LR = 0.01
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(b) Adam, LR = 0.001

Figure C.6: PAC–Bayes measures vs. label corruption under Adam. With
LR=10−2, the family rises steadily with corruption; with LR=10−3 it sits higher overall
and shows a shallow U–shape. All panels use 10,000 training samples.

C.3 Additional label-corruption results: PAC–Bayes
and Path Norms

This appendix gathers the label–corruption results referenced in the main text for

both PAC–Bayes–style measures and Path Norms.

PAC–Bayes measures. Under Adam, lowering the learning rate from 10−2 to

10−3 transforms a clean, steadily rising ramp (e.g., PACBAYES_ORIG from ∼ 3.6

past 4.7) into a higher–lying but shallower U–shape centred around ∼ 8. At

fixed learning rate 10−2, swapping Adam for SGD produces a striking level shift:

SGD yields a high plateau (∼ 12–13) with little curvature, while Adam traces

a low, clearly increasing arc (∼ 3.6–4.7). Even within the PAC–Bayes family,

members respond differently by optimizer: PACBAYES_INIT grows aggressively

under Adam but only mildly under SGD. These patterns illustrate an (often)

insensitive or contradictory relationship between the measure and increasing label

corruption—another facet of fragility.

Path norms under SGD (momentum). Mirroring the Adam case in the

main text, SGD with momentum exhibits an equally striking flip (Fig. C.8): at

LR=10−3, the path-norm trajectory lives in the 104–105 band and decays steadily

with corruption; at LR=10−1, the scale crashes to nearly zero and the curve climbs
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(a) Adam, LR = 0.01
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(b) SGD (momentum), LR = 0.01

Figure C.7: PAC–Bayes measures vs. label corruption at fixed LR (10−2),
swapping only the optimizer. Adam yields a low, steadily rising family (e.g.,
PACBAYES_ORIG ≈ 3.6–4.7), whereas SGD holds a high plateau (∼ 12–13) with minimal
curvature; PACBAYES_INIT grows far more under Adam than under SGD. All panels use
10,000 training samples.
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(b) LR = 0.001

Figure C.8: Path norms vs. label corruption with SGD (momentum); panels differ
only in learning rate. At LR=10−3 the curve sits in 104–105 and decays with corruption;
at LR=10−1 it lives near zero and rises. Both the direction and the dynamic range
flip—another instance of qualitative mismatch across a minimal training change. All
panels use 10,000 training samples.

monotonically. Trend and scale both invert. If a reader tried to infer “harder data

⇒ larger path norm” from one panel, the other would immediately contradict it.

C.4 Stress-testing generalization measures with
pixel permutations

A useful generalization measure should pass two basic stress tests: (i) it should

be insensitive to symmetry-preserving transformations that do not change the

intrinsic task, yet (ii) sensitive when task-relevant information is destroyed. Pixel

permutations provide such a testbed: applying the same permutation to the training
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and test sets preserves label–input relationships (a symmetry for fully connected

networks), whereas applying independent random permutations to train and test

destroys spatial structure and any usable signal.

We evaluate three families of measures alongside test error on MNIST with

two architectures: a fully connected network (FCN) and a ResNet-50. We vary

the optimizer (sgd vs. adam) and the early-stopping criterion (best cross-entropy

“CE” vs. best accuracy “Acc”) to expose hyperparameter sensitivity. Results are

summarized in Tables C.1 and C.2.

FCN (permutation symmetry holds). When the same pixel permutation is

applied to both train and test, the FCN effectively sees an unchanged task. As

expected, test error remains essentially constant (≈ 0.03 across optimizers/stopping),

and the PAC-Bayesian marginal likelihood (ML) bound is flat (0.142 throughout).

This indicates desirable robustness to symmetry-preserving changes. In contrast,

under independent random permutations, test error rises to ≈ 0.49–0.50 (near

random guessing), and the ML bound increases to 0.532—appropriately reflect-

ing reduced learnability. The path norm and the original PAC-Bayes variant

(PACBAYES-ORIG) trend upward in this harder setting, but they also exhibit

large spread across optimizers/stopping; e.g., the path norm spans from 0.105

to 6.632 under random shuffling, smaller than some unshuffled cases, revealing

fragility to seemingly minor training choices.

ResNet-50 (permutation symmetry broken). Because convolutional induc-

tive biases depend on spatial locality, even a single shared permutation distorts the

data geometry and degrades performance (test error increases from ≈ 0.014–0.025 to

≈ 0.041–0.060; the ML bound rises from 0.101 to 0.170). With independent random

permutations, test error again moves to ≈ 0.44–0.46 and the ML bound to ≈ 0.504.

The path norm is particularly volatile here, spanning orders of magnitude across

training choices (e.g., 0.016 vs. 3375.355), underscoring substantial measure fragility.
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Table C.1: Pixel permutations with MNIST + FCN (training set size n=10,000). Same-
permutation preserves the FCN’s permutation symmetry; independent (random) permutations
destroy learnable signal.

Optimizer /
stopping

Test err. PAC-Bayes ML Path norm PACBAYES-ORIG

Unshuffled pixels

SGD / CE 0.033 0.142 0.080 1.534
ADAM / CE 0.034 0.142 0.173 1.208
SGD / Acc 0.032 0.142 0.081 1.535
ADAM / Acc 0.031 0.142 0.379 1.187

Same permutation on train & test

SGD / CE 0.032 0.142 0.080 1.558
ADAM / CE 0.034 0.142 0.184 1.202
SGD / Acc 0.032 0.142 0.081 1.534
ADAM / Acc 0.032 0.142 0.314 1.183

Independent random permutations (train & test)

SGD / CE 0.497 0.532 0.124 2.232
ADAM / CE 0.492 0.532 5.736 1.791
SGD / Acc 0.498 0.532 0.105 2.400
ADAM / Acc 0.488 0.532 6.632 1.837

CE: best checkpoint by cross-entropy; Acc: best checkpoint by accuracy.

Takeaways. Under symmetry-preserving changes (FCN + same-permutation), a

robust measure should not move; under signal destruction (independent permuta-

tions), it should reflect the loss of learnability. The PAC-Bayesian ML bound behaves

in this manner in both architectures, whereas the path norm and PACBAYES-ORIG

can vary dramatically with optimizer/stopping, masking the underlying data effect.

Reporting such sensitivity is crucial when proposing or comparing generalization

measures, in line with our paper’s emphasis on diagnosing and documenting fragility.1

1While label corruption is another standard knob for data complexity, here we focus on pixel
permutations to isolate architectural symmetry vs. information destruction.
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Table C.2: Pixel permutations with MNIST + ResNet-50 (n=10,000). Convolutional
inductive biases depend on spatial locality, so even a single shared permutation harms
performance.

Optimizer /
stopping

Test err. PAC-Bayes ML Path norm PACBAYES-ORIG

Unshuffled pixels

SGD / CE 0.022 0.101 2980.415 15.396
ADAM / CE 0.016 0.101 0.173 4.498
SGD / Acc 0.025 0.101 2972.887 15.125
ADAM / Acc 0.014 0.101 0.022 4.417

Same permutation on train & test

SGD / CE 0.060 0.170 3375.355 13.534
ADAM / CE 0.046 0.170 0.016 4.074
SGD / Acc 0.056 0.170 3001.528 12.529
ADAM / Acc 0.041 0.170 0.021 3.909

Independent random permutations (train & test)

SGD / CE 0.460 0.504 116.602 13.77
ADAM / CE 0.437 0.504 0.081 4.157
SGD / Acc 0.460 0.504 67.497 12.475
ADAM / Acc 0.437 0.504 0.084 4.119

CE: best checkpoint by cross-entropy; Acc: best checkpoint by accuracy.
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D.1 Extending the ℓr-Scaling Theorem to Diag-
onal Linear Networks

This section is a blueprint for porting our main ℓr-scaling theorem from the minimum-

ℓp interpolator to predictors selected by training diagonal linear networks (DLNs)

with arbitrary depth. The goal is to reuse the entire spike+bulk argument with

minimal surgery by swapping in the right implicit regularizer and the right one-

dimensional balance. The guidance below covers both the two-layer case and the

general depth-D case, aligning with the characterization of implicit bias in DLNs

proved by Woodworth et al. [2020].

In our min ℓp analysis, the predictor among all interpolators is selected by a

separable power potential, and the proof runs through a dual “link” that maps the

ray variable back to primal coordinates. DLNs fit exactly the same template:

• For two layers, the implicit regularizer is the hypentropy-type separable

potential, and the link is the corresponding odd, strictly increasing map

(Woodworth et al., Thm. 1). Non-uniform initialization simply reweights

coordinates multiplicatively throughout.

• For depth D ≥ 3, the implicit regularizer is again separable but with a depth-

dependent link; Woodworth et al. (Thm. 3) identify the unique depth-D link

204
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and its inverse. Practically, you can treat it as “the D-link” playing the role

occupied by the power map in min ℓp and by the hypentropy link at D = 2.

No other structural change is needed: once the link is fixed, every step of our proof

goes through with the same spike/bulk decomposition and the same ray reduction.

As in the min ℓp proof, restrict the dual variable to the ray spanned by the

labels and determine a single scale t from a strictly monotone one-dimensional

balance. Conceptually:

• In the kernel-like window (small arguments of the link on both spike and

bulk), the link linearizes and the entire analysis collapses to the p = 2 case

verbatim. This is the “lazy” regime.

• In the rich-like window (arguments large on the bulk and/or a dominant

spike), the nonlinearity of the link controls the transition. For two layers, the

balance yields a Lambert–W controlled scale; for D≥ 3, the depth-D link

gives a faster, polynomial-in-initialization transition. You do not need a closed

form—just the monotonicity and the small/large-argument asymptotics.

Bulk block. Replace the power moment used in the min ℓp bulk bound by

the depth-appropriate scalar functional that averages the link across a standard

Gaussian coordinate. Operationally:

• Define a bulk scalar by applying the DLN link at the ray scale to a single

Gaussian coordinate and taking its ℓr moment (to the 1/r). This plays the

exact role of m1/t
t in the min ℓp proof.

• Use the same Gaussian embedding for the bulk design to lift this scalar to the

full bulk contribution. In the kernel-like window you recover the p = 2 scaling

exactly; in the rich-like window you get the accelerated depth-D growth

predicted by the link’s large-argument behavior.

• Keep track of the global scaling coming from the link’s overall prefactor (this

carries the initialization scale); it multiplies both bulk and spike-remainder

terms.



D. Additional appendices for Chapter 5 206

Spike block. On the spike coordinates, keep the original two-part structure:

• Spike-main: apply the link to the mean shift determined by the signal; if a

single coordinate dominates the one-dimensional balance, the selected predictor

saturates at the spike scale and becomes essentially independent of the

initialization (up to lower-order logarithmic or depth-dependent corrections).

• Spike-remainder: control the residual Gaussian fluctuation by the same

operator-norm and concentration events as in the min ℓp proof; its ℓr size is

the bulk scalar (at the ray scale) times smax{1/r, 1/2}, again multiplied by the

link’s global prefactor.

When spikes are meek relative to the bulk (no dominant coordinate), the spike

block linearizes and you are back in the p = 2 laws.

Unified bound. After these replacements, the final display has the identical

three-term structure:

DLN predictor’s ℓr size = maximum of (spike-main, bulk, spike-remainder),

with each term obtained from the min ℓp counterpart by: (i) replacing the power link

with the DLN link; (ii) inserting the link’s global prefactor; and (iii) using the DLN

bulk scalar in place of the power moment. In the kernel-like window this reproduces

the p = 2 version exactly; in the rich-like window you get either bulk-controlled

growth (Lambert–W for two layers; depth-accelerated for D≥3) or spike saturation.

Depth and initialization intricacy.

• Depth D ≥ 3. The depth-D link is odd, strictly increasing, and has a

simple linearization at the origin and an explicit rational form away from

it (Woodworth et al., Thm. 3). This yields the same kernel-like reduction

and a sharper rich-like transition than at D = 2. You never need its closed

form—only its monotonicity and asymptotics.
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• Non-uniform initialization. The per-coordinate shape of the initialization

simply reweights the separable potential and carries multiplicatively through

the link. Every bound inherits these weights in a purely multiplicative way

(Woodworth et al., Thm. 1).

• Limits. Large initialization recovers the minimum-ℓ2 norm predictor; vanish-

ing initialization recovers the minimum-ℓ1 predictor (with the usual caveats

on how small “small” must be). These are the DLN analogues of the kernel

and rich limits and hold for all depths covered above.

A handy dictionary for porting the proof. To translate any display or lemma

from the min ℓp analysis to DLNs, we can make the following substitutions:

1. Power link → DLN link: replace the power map by the depth-appropriate

link (hypentropy at two layers; the depth-D link from Woodworth et al.

otherwise), including its global prefactor.

2. Ray scale → DLN balance: keep the same one-dimensional, strictly

monotone balance along the label ray; solve it numerically or via asymptotics

(linear in the kernel-like window; Lambert–W at two layers and power-law at

depth D≥3 in the rich-like window).

3. Bulk scalar: replace the power moment by the ℓr moment of the DLN link

applied to a single Gaussian coordinate at the ray scale; lift via the Gaussian

embedding exactly as before.

4. Spike block: reuse the deterministic-plus-Gaussian decomposition, the

operator-norm and concentration events, and the same ℓr geometry; only

the link and its global prefactor change.

With the substitutions above, the ℓr-scaling analysis for the minimum-ℓp interpo-

lator transfers directly to DLNs of any depth. The proof structure, the spike/bulk

decomposition, and the final three-term form remain identical; only the link and its

scalar balance change. Two layers inherit a Lambert–W bulk scale; deeper networks
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transition faster with initialization due to their depth-D link. In the kernel-like

window, everything collapses to the p = 2 bounds almost word-for-word.
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